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Abstract

In recent years, powerful design tools for linear time-invariant multivariable control systems
have been developed based on direct parameter optimization. In this report, an algorithm
for reliable optimal control synthesis using parameter optimization is presented. Specifically,
a robust numerical algorithm is developed for the evaluation of the H2-like cost functional
and its gradients with respect to the controller design parameters. The method is specifi-
cally designed to handle defective degenerate systems and is based on the well-known Padé
series approximation of the matrix exponential. Numerical test problems in control synthe-
sis for simple mechanical systems and for a flexible structure with densely packed modes
illustrate positively the reliability of this method when compared to a method based on
diagonalization.

Several types of cost functions have been considered: a cost function for robust control
consisting of a linear combination of quadratic objectives for deterministic and random
disturbances, and one representing an upper bound on the quadratic objective for worst—
case initial conditions.

Finally, a framework for multivariable control synthesis has been developed combin-
ing the concept of closed-loop transfer recovery with numerical parameter optimization.
The procedure enables designers to synthesize not only observer-based controllers but also
controllers of arbitrary order and structure. Numerical design solutions rely heavily on
the robust algorithm due to the high order of the synthesis model and the presence of
near-overlapping modes. The design approach is successfully applied to the design of a
high-bandwidth control system for a rotorcraft.
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Chapter 1

Introduction

1.1 Optimal Control Synthesis and Parameter Optimiza-
tion

Traditional design methods in linear optimal control for continuous-time systems have been
extensively treated [1]. Development of these control systems is usually based on the char-
acterization of the control problem under the setting of optimization of the two-norm of a
set of controlled output responses to random disturbance inputs or initial conditions. Ad-
ditional consideration of design robustness is taken by formulating the problem to include
H®*-norm bound constraints for a class of additive and multiplicative uncertainties applied
at the plant inputs and/or outputs. Solutions are obtained for both the state- and output-
feedback design problems and involve, in the majority of cases, solving an appropriate set
of algebraic Riccati equations [4, 5]. Theoretical studies of these approaches have been a
major concern of researchers in the control field and a major breakthrough has been made
in recent work by Stoorvogel [13, 14].

An alternate and less often mentioned design option for robust multivariable control is
based on direct numerical optimization of a H? performance objective with a given pre-
specified controller structure. Early work in this area has been published by Levine and
Athans [15], Anderson and Moore [16], and more recently, an extensive review of the subject
was presented by Makila [17]. More recently, a new look into parameter optimization as it
applies to multivariable control synthesis is provided by Ly [18] where he used a quadratic
performance objective based on a finite-time horizon and the nonlinear optimization tech-
nique of Ref. [21].

Synthesis of robust multivariable control systems using nonlinear constrained optimiza-
tion has become increasingly important in recent years [40]-[41] due to the design flexibility
this approach offers. A numerical design package SANDY was developed to provide for
the first time such an effective controller design tool. The plant and controller models are
assumed to be linear and time invariant. The controller can possess a non-observer based
structure and be of much lower order than the plant. To ensure good responses in criti-
cal spectral regions, a frequency-shaped H? performance objective can be implemented by
means of bandpass filters . Robustness can be enhanced by simultaneously optimizing over
several plant model perturbations from a given nominal condition. Other control design
specifications, including robustness, can be achieved via the concept of Closed-Loop Trans-
fer Recovery [11]. This procedure, to be discussed further in Chapter 5, allows designers
to achieve design performance and robustness starting from a satisfactory state-feedback



control law.

Development of reliable numerical optimization for linear optimal control synthesis re-
quires effective algorithms for the evaluation of the objective function and the associated
gradients. One numerical limitation in the design optimization scheme developed in [18§]
arises when degenerate modes occur in the closed-loop system. The corresponding system
dynamics matrix will contain defective eigenvalues which are most often visualized in Jordan
blocks. Occurrence of these defective eigenvalues becomes more frequent when a multiloop
control law is being synthesized based on frequency-shaped design objectives or distur-
bances with degenerate power spectra (e.g. transverse Dryden turbulence spectra in wind
turbulence). Degenerate systems can also occur in the design procedure of Closed-Loop
Transfer Recovery (CLTR). Here, closed-loop dynamics from an output-feedback design in
the CLTR procedure tend to overlap those attained under state feedback. With inexact
arithmetic and large system matrices, these conditions lead to near degenerate systems and
the appearance of Jordan blocks.

1.2 Key Research Motivation

e Experience with the optimization of low-order output feedback controllers in H 2
inspires a search for a systematic way to include robustness in the design without
tedious adjustment of design weights. One approach would be to use a different cost
function, such as one based on worst—case initial conditions. Experience with this
worst—case cost function indicates that while it would offer some help with robustness
in particular, one would hope for a more comprehensive design methodology to obtain
a more complete set of desired properties. Such is the promise of closed-loop transfer
recovery (CLTR), which is based on recovering the properties of a state-feedback
design with an output-feedback controller.

e Numerical optimization based on gradient information promises fast convergence, but
it requires a precise calculation of the cost function and its gradient with respect to
the controller design parameters. Existing numerical algorithms for these calculations
lose accuracy as degeneracy in a system mode is approached and several of the cor-
responding eigenvalues become more defective. This loss of accuracy occurs in many
design situations related to control of flexible structures with closely packed modes, or
use of model matching and/or frequency-shaped objectives. Experience with closed-
loop transfer recovery involving systems of reasonable size almost always generates
defective eigenvalues.

e The terminology “more defective” is not common usage. However, this terminology
does properly express the quantitative nature of the loss of accuracy that prevails in
existing eigenvalue—-eigenvector decomposition routines. One can define a tolerance,
based on the condition of the eigenvector matrix, where inaccuracies in the established
gradient calculation will noticeably affect the optimization process.

e In this research, several algorithms tolerant of defective systems have been considered.
The most successful one involved converting the gradient computation to an exponen-
tial calculation and using the well-known Padé series for the matrix exponential. The
Padé series itself is applied to a scaled matrix, and the careful term-by-term evalua-
tion combined with a judicious scaling process have enabled this approach to handle a



wide range of system matrices. In addition to the theoretical assurances, this formula
was demonstrated to work in many selected test cases.

o The proposed robust algorithm will provide an enabling technology for closed-loop
transfer recovery within the framework of numerical optimization. System matri-
ces under the CLTR design procedure tend to contain Jordan blocks owing to their
size and the presence of overlapping poles. Within the CLTR framework, the best
possible performance of an output-feedback controller can be predicted by exam-
ining the system theoretic properties with the Special Coordinate Basis (SCB). In
addition, a low-order output—feedback controller can be employed to recover many
state—feedback properties such as robustness without the tedious effort of manipu-
lating penalty weights and the many ensuing design iterations. A demonstration of
CLTR on a rotorcraft problem containing a reasonably large system model is pre-
sented. A systematic design procedure produces encouraging results over two flight
conditions. The numerical optimization part of this procedure would not have been
possible without the robust gradient formulation.

e A more ideal approach for gradient calculation aims at combining robustness of the
new gradient algorithm with the speed, low memory usage, and scale insensitivity of
the original diagonalization method [18]. With this comes the need of an alternate
means of decomposing a matrix into its eigenvalues and eigenvectors—with the priority
of keeping the condition of its eigenvector matrix above a predetermined level for
computational reliability. Such an algorithm is sketched in Appendices A and B.

1.3 Summary of Contributions

The basic contribution is a robust algorithm for computing the integrals
t t rv
x(t) = f e?*BeC*ds, M(t) = / / e?W=9) BeC DeP* ds dv,
0 0 Jo

which are at the heart of the gradient calculations for several types of cost functions. There
are two main developments: first, the ability to express each integral as a matrix exponential,
allowing well-known techniques for computing a matrix exponential to come into play;
second, the rearrangement of the matrix exponential computations into a faster, less memory
intensive, and more robust form specific for each integral.

Although the robust algorithm guarantees an answer for a wider range of input matrices,
it uses more memory and is slower. The mode degeneracy is already parameterized in the
condition of the eigenvector matrix. In running a wide variety of test cases, a limit on
where this condition affects the optimization was determined. Using this limit, a means of
switching between the original calculation and the robust one is made to promote optimum
speed.

Another contribution is in implementing an approximate minimax cost function: unlike
H?-optimal control, this formulation minimizes a worst-case response to initial conditions.
The actual worst case is approximated, and result of this approximation is in a form similar
to that already used in H2-norm.

Application of numerical optimization to CLTR completes a new development in CLTR
design and analysis. A high-order and realistic design problem for the control of a UH-60
rotorcraft poses a challenging limit on the number of optimization trials one may pursue due



to the CPU requirements. It is shown that, when properly set up, CLTR using numerical
optimization would allow designers to obtain satisfactory design results quickly and in a
routine manner for output-feedback controllers starting from a satisfactory state-feedback
design. While the required controller order may be higher in the CLTR design approach
than in a pure direct optimization of a H?-norm objective using an arbitrarily selected
Jlow-order controller structure, the need to re-design for robustness or other requirements
is reduced.



Chapter 2

Control Design Using Numerical
Optimization

2.1 Introduction

Direct parameter optimization provides a versatile method for linear multivariable con-
trol and has a broad range of applications. The design optimization is usually formulated
within the context of H? optimal control. For completeness, a general formulation of the
control design problem is given in this chapter. Different design cost functions are defined
corresponding to a class of deterministic and stochastic control problems. Equivalent rela-
tions between each design setup are established. Solutions of these design problems are a
strong function of the disturbance input characteristics or plant initial conditions. These
influences become particularly significant in the control synthesis of low-order controllers
using direct parameter optimization. Such a design issue was addressed in [19] concerning
the potential design sensitivity to plant initial conditions in optimal control synthesis. A
worst—case design approach based on the largest singular value of a weighted covariance
matrix was henceforth proposed by Bryson [19] to desensitize the optimal design. A sim-
pler approach based on an upper bound to the worst-case cost is developed in this chapter
and provides a convenient and numerically efficient way to address the worst-case design
problem. A simple helicopter control design is used to illustrate the differences between
a standard LQG design, an H?-optimal control using parameter optimization, and those
obtained using different design techniques for worst—case initial conditions.

2.2 Synthesis Model Description

The following problem formulation is suited for the control synthesis of a robust low-order
controller in linear time-invariant systems. The system P'(s) is to be controlled by a
constant-gain controller C(s) as depicted in Figure 2.1 where z*(s) is the controlled output
vector, y:(s) the measurement output vector, w'(s) the disturbance input vector and u*(s)
the control input vector. For a consistent notation, the superscript ¢ is used throughout to
denote the system model at the i** plant condition. Although there may be a set of plant
models corresponding to a series of design conditions, there is only one controller, C(s), in
the design optimization. Hence, this single controller will provide stability and performance
over all the defined plant conditions. The controller is modelled as a linear time-invariant
system of a given pre-specified order. Its formulation can accomodate both a feedforward



w'(s) 2'(s)

Pi(s)

(i=1>NP)

u'(s) yi(s)

C(s)

Figure 2.1: Closed-Loop System with a Feedback/Feedforward Controller

and a feedback controller structure. As stated before, plant parameter design robustness
requirements in the context of our problem formulation are defined under the conditions
that the control system C(s) stabilizes the class of plants Pi(s), 1 <i < Np.

State equations describing the system model Pi(s) at the i** plant condition (Figure 2.1)
are given in equations (2.1)-(2.3) below.

e State Equations:

i (t) = Flai(t) + GPui(t) + Tuw'(t)
(B oo -

where z*(t) is a nx1 plant state vector, u*(¢) an mx1 control vector, w'(¢) an m’x1 disturbance-
input vector, F* an nxn state matrix, G* an nxm control distribution matrix and I'* an nxm’
input-disturbance distribution matrix.

Notice that, in the above description, we assume that all the system states are initially
acquiescent. This assumption is made without loss of generality since one can always
establish impulsive inputs w*(t) together with an appropriate influence matrix I'* to generate
any given state initial conditions.

e Measurement Equations:

yi(t) = Ho'(t) + D}, u'(t) + Di,w'(t) (2.2)

where yt(t) is a px1 measurement vector,H: a pxn state-to-measurement distribution matrix,
D3, a pxm control-to-measurement distribution matrix and D}, a pxm’ input-disturbance-
to-measurement distribution matrix.

o Criterion Equations:

2 (t) = Hlx'(t) + D' (t) + D wi(t) (2.3)

where 2*(t) is a p'x1 criterion vector, H! a p'xn state-to-criterion distribution matrix, Di, a
p'xm control-to-criterion distribution matrix and D%, a p’xm’ input-disturbance-to-criterion
distribution matrix.



For generality, the disturbances w'(t) are modeled as outputs of a linear time-invariant
system excited by either impulse inputs or white noise signals. In this manner, one can
shape the disturbance signals to have any deterministic response (e.g. filtered step functions,
sinusoidal functions, exponentially decayed or growing sinusoidal functions, etc...) or, to
model stochastic inputs with any given power spectral density functions. At the i** plant
condition, the disturbance model is given by equations (2.4)-(2.5) below.

¢ Disturbance State Equations:
il,‘:’u(t) = F&Jm:u(t) + Fiuﬂi(t) (2.4)
2 (0) =0 '
where 23, (t) is a n'x1 disturbance state vector, 7'(t) a m'x1 vector of either impulses (i.e.,
n'(t) = 756(t) with E[n] = 0 and E[niniT] = W), or white-noise processes 7(t) with zero
mean and covariance E[ni(t)nil ()] = W26(t — 7). The covariance matrix W is an m/xm/
diagonal positive semi—definite matrix, F}, an n'xn’ state matrix of the disturbance model
and I}, an n'xm’ input-distribution matrix.

¢ Disturbance Output Equations:
w'(t) = Hy,a, (t) + Dy (t) (2.5)

where w'(t) is a m’x1 disturbance output vector, H:, an m’xn’ disturbance output matrix
and D?, an m/xm’ direct feedthrough distribution matrix.

State model of the controller C(s) (Figure 2.1) is that of a linear time-invariant system
described by equations (2.6)-(2.7) below.

e Controller State Equations:
{:’cc(t) = Aczc(t) + Boyi(t)
z:(0) =0

where z.(t) is a rx1 controller state vector, A. a rxr state matrix of the controller and B,
a rxp measurement-input distribution matrix.

(2.6)

e Control Equations:

u'(t) = Cexc(t) + Deys(t) (2.7
where ui(t) is an mx1 feedback control vector, C. an mxr control-output distribution matrix
and D, an mxp direct feedthrough matrix.

For control-law synthesis, any elements of the controller state matrices can be chosen as
design parameters while the remaining elements can be left fixed at pre-assigned values. In
addition, if needed, linear and nonlinear equality or inequality constraints can be established
among the selected design parameters in order to ensure additional design structure. For
convenience in the derivation of the performance index and its gradients with respect to the
controller design parameters, we define a matrix C, that assembles all the controller state
matrices (Ac, Be, Ce, Dc) into one compact form as follows,

- [2 9]
Be  Acmiryxp+r)

Thus, the single matrix C, will completely define the controller state model. Obviously,
for the case of a static output-feedback design (i.e., the controller order r = 0), we simply
have C, = D.. In the following sections, we will develop a control design problem based on
the minimization of a performance objective using the controller C(s) defined in equations
(2.6)-(2.7).

(2.8)



2.3 Formulation of the Closed—Loop System

In the general case, the problem formulation assumes that there is no implicit-loop paths
within the feedback control system. Namely, the control input u*(t) or the measurement
output ¥ () must not have any direct link to itself. This translates into the conditions that
one of the products D.D%, or D!, D, must be zero. These conditions are not restrictive
since, in practice, the presence of either actuation or sensor dynamics would automatically
result in a system that satisfies the above assumptions. Moreover, for well-posed systems
one can always reformulate the problem into an equivalent problem involving a modified
set of measurement outputs 7%(t)(= yi(t) — Di,u(t)). Thus,

7s(t) = Hiz'(t) + Di,wi(t) (2.9)

Note that the re-defined measurement outputs 3 (¢) do not have a term involving the control
variable u'(?) (i.e., D}, = 0). However, for the discussions that follow, we make use of the
results in [18] where we assume that either D%, D. =0 or DD}, = 0.

2.3.1 Case D.Di, =0

Combining the states of the plant, controller, and disturbances into an augmented system
with the following states

RREC
z(t) = | () |- (2.10)
Ty, (1)
Dynamics for the overall closed—loop system are
d:li(t) — Flixli(t) + FliT]i(t), (2_11)
where
_ F' + G":DCH; . GiC. (T* +G'D.Di,)H},
F*=| B.(1+ D,D;)H} A.+ B.D:,C. B(I+ Dich)Din,ﬂ,
0 0 F:U (n+r+n)X(ntr4n’)
' . ' . (2.12)
_ (" + G*'D.D5,, ) Dy,
I =| B(I+ D5, D) D, D, (2.13)
F:” (n4r+n')xm’
H} = [(1+ D}, D)H: DiCe (1+ Dgch)Dng,ﬁ,]px(Mm,) (2.14)
Df = [(1+ Di,De) Dng:',,]pxm, (2.15)
H} = [Hi+ DL DcH: DiCe (DiDcDiy, + D;U)H,i,]ﬂx(ww) (2.16)
and
ro_ i i gy
Ch = [DCHs C, DCDstw]mx(Wm,) (2.17)

With the above definitions, equations (2.2), (2.3), and (2.7) for y(t), 2*(t) and u'(t) become

ys(t) = Hiz"(t)+ Din'(t) (2.18)
() = HP2"(t) +(Di,D.Di, + D!, )Dini(t) (2.19)
u'(t) = C"g"(t) + DDl Din'(t) (2.20)



2.3.2 Case D\, D.=0

The closed-loop system for the combined plant, controller, and disturbance dynamics is
again defined by _ o o
i"(t) = F'z"(t) + "' (1), (2.21)

where the system matrix F* and the distribution matrix I are now given by

F'+G'D.H: G'(1+ D.D.)C. (I*+G'D.Di )H:

F'i = B.H! Ac.+ B.D%,C. BCD;U HY (2.22)
0 0 Fi
_ (T* + G'D.D;,) D,
"= B.Di,Di, : (2.23)
Ty,

Equations (2.18), (2.19), and (2.20) for the sensor, control, and criterion outputs are defined
as before, where the matrices H}, D7, H?, and C" take on the following form

HY = [Hi DiCe D, HY) (2.24)
Di = [Di,Di] (2.25)
Hzl:i = [Hc + DcchHs Dcu(I + Dch‘u-)CC (DCUDcDS'w + Dcw)Hw] ’ (2'26)
and ' , ' o
C" = [DeH (1+ DeDi,)Ce DDy, Hy,| . (2.27)

2.4 Design Cost Functions for H? Optimal Control

To examine the entire class of H2-optimal control problems and to handle the problem
of sensitivity to plant modeling uncertainties, we define the objective function given in
equations (2.28) and (2.32). This formulation turns out to be versatile and well-posed for
the setting of a nonlinear constrained optimization problem. However, depending on the
types of disturbance model, that is whether the disturbance outputs w'(t) are responses
to impulse or white-noise inputs, different definitions of the objective function are needed.
Another cost function is defined in equation (2.38) to address a worst—case control design
problem.

For these cost functions to be well-defined (bounded), one needs to identify the presence
of direct feedthrough terms from the disturbance inputs 7'(t) to the criterion outputs z*(t).
Specifically, for either impulsive inputs or white-noise disturbances, the objective functions
defined in equations (2.28), (2.32), and (2.38) would become unbounded when the direct
feedthrough term D%, is nonzero. When a direct feedthrough term exists (e.g., in command-
following synthesis), the disturbance inputs must be implemented as band-limited signals
(i-e., they are generated from outputs of some roll-off shaping filters). Basically, this reduces
the direct term Di,, to zero and places the direct influence of the disturbances within the
criterion output distribution matrix H”, in equation (2.16).

A similar problem would occur for the case where there is a direct feedthrough term
between the disturbances w(t) and the measurements y,(t). The condition for a bounded
performance objective requires that the products Q*(Dk,D.Di, + Di,) and RID.D_ be
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zero for the cases of either impulsive or white-noise disturbances. Again, such conditions
will always hold for band-limited sensor noises.

These cost functions are given using the terminology defined in the previous section for
the closed-loop systems.

2.4.1 Random Impulsive Disturbances

Consider the following cost function
1 Y, . . , .
Ji(ts, Co) = 5 Z W;/O X ER T (4)Q 2 (1) + u'T () Riu*(t)]dt (2.28)
i=1

The expectation operator E[—] is over the ensemble of the random variables 7} in the pa-
rameterized impulse inputs 7*(t) = n.8(t). Control design problems formulated with the
above performance index J(ts,C,) are often classified under the category of deterministic
control. Under this category are, for example, the familiar control problems of command
tracking control, disturbance rejection of unwanted but known external input signals, im-
plicit and explicit model-following designs, H?2-control to initial conditions and H*-control
to sinusoidal inputs.
This form for the cost function can be further expanded by embedding the closed-loop
system responses o
xli(t) _ e(F"+a‘I)tl—w/in:') (2.29)

directly into the cost function Ji(ts, C,) as
N,
C) — l pWi tf E [niTTHT o(Fi4et DT giiT i ppti | ofT g (Fr4a* DT gyrtii
Jl(tfa 0) = 22 P Jo o € [ c Q et R ]6 dil’ T]O]
=1
N,
_ lZPWiE[ iTFIiTSi(t C)I"i i]
- 9 4 « p Mo frLo Mo
1=
N,
122 s ) o
- E.ZIW’: tr {T"T S(t7, Co)TE [T |}
1=

N,
_ %é Wi tr {TT8%(ty, CT™E [niniT |}

N,
13 e .y
= Y Wt {r"Ts“(tf,co)r'lwg} (2.30)
i=1
where b
S"(tf,C'o) =/ e(F”+a'I)Tt[anTQiH/2+CliTRiCli]e(F"+a‘I)Ttdt (2.31)
0

and Wi = FE [ngn:',T] .

2.4.2 Random White-Noise Disturbances

The objective function defined in equation (2.28) is no longer valid since it is unbounded
due to the presence of disturbances with white-noise spectra. For this reason, it is not
proper to mix, in a given single plant condition, design considerations of initial conditions

10



and of disturbance rejection to white-noise disturbances with the same objective function.
Alternate objective functions for the disturbance rejection problem must be defined (Refer
to Appendix A of Ref. [18]). There are basically two ways to define a quadratic objective
function for white-noise disturbances. The first formulation involves the state covariance
responses evaluated at the terminal time ¢;. Namely,

Np . . . . . .
i1, Co) = 3 3 WiBalsT )@ 2 (L) + 4T () R (L)) (2.32)
=1

The second formulation is a time-average of the state covariance responses,

1 & ; Y T i T pi, i
Jo(ty,Ce) = 57 3 WP UO ATOQ 2 (t) + u (t)Ru(t)dt}. (2.33)

The expectation operator E,:[—] is over the ensemble of the random processes defined in the
input variables 7 (t) for a closed-loop system destabilized by a factor . The destabilization
effectively adds a value o to the diagonal elements of the closed-loop system matrix. Given
one of the above performance indices, one can address the entire class of H2-norm based
control design problems. For example, we can solve for the linear quadratic regulator
design (LQR), the linear quadratic gaussian (LQG) design, loop transfer recovery (LTR),
closed-loop transfer recovery (CLTR), or model reduction based on the minimization of the
H?%.norm of the error.

These two cost functions can be shown to be related to each other and also to the cost
Ji(ts, C,) defined in Section 2.4.1. Embedding the closed-loop state responses,

. if 2 i i 1
2t = [ P DI () dr, (2.34)
into Jo(t5,C,), we have
1 Np . . L . i ty i LN i
Jo(ty,Co) = 52 W tr{(HgTQ‘Hf+C"TR‘C”) /0 /0 el P+t Dits—m)ps
i=1
E [ (r)n'T (s)] DT P4+ D742 g g | (2.35)

With E [n"(r)n"T(s)] = Wi6(r — s), equation (2.35) becomes

N,
Joty, De) = 5 Z W; tr { (HézTQzHéz + CnTRzCn)
i=1
/tf e(F"—{»—a‘I)(t;—T)FliWoiFliTe(F"+aiI)T(tf~T) dT}
0

No e e iy s . o
— _;_ Z W;,' tr { (Htl:zTQzH:. + CltTRzCn) /0 e(F "+a’1)tl-\l1.W;le1.Te(F tai)T dt
i=1

. ; t H o : P ST i ot H i S
— —'ZWZ tr {leT/O ! e(F +a* DTt (HgTQzHéz + ClzTthn) C(F +atlit thIzW‘;}
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Or simplifying,
N,
1A o .
Jalty, De) = 53 Wy tr {rTsy, DT*W3}. (2.36)
i=1
The above objective function is identical to the cost function Ji(ts, D.) in equation (2.30).

As before, the objective function J3(ts,C,) can be simplified using the closed-loop re-
sponses given in equation (2.34) as follows,

Np
Ja(ts, Co) = 2_; > wi wr{(HITQ HE + C"T R'C") a(t 0} (2.37)
i=1

where
q;(tf):/tf /t/te(F"+a‘I)(t—f)FiE [nz‘(,’_)niT(s)} T (Fi4a DT (1=3) 4o g i
o Jo Jo _

Again, with FE [w(r)wT(s)] = Wob(1 — ),

N,
LA e .
B C) = g3 W; tr { (HETQHY + C"TR'C*)
i=1
bort (F+at DY(t—m)phygiTHT (F4+a* DT (t-1)
/ / e I"w,I""e drdt

— Z W'z {FMT/ / (Fi4a*NT(t—71) (HnTQzHlt + ClzTRzCn)
Qtf
e(F“-{-a’[)(t—T) detr\li W;}

t
_ i/’Jz(t,co) dt < Ja(ts, Co)
ty Jo

since the objective function J;(t,C,) is a monotonic increasing function of time ¢. Hence,
J3(ts, Co) < Ja(ty,Co) for any finite terminal time ¢y, and they become equal in the steady-
state case where ty — oo.

We have shown that a design objective for random white-noise disturbances as given in
the cost functional Jy(ts, Co) or Ja(ts, Co) is equivalent to one involving initial conditions
or impulsive disturbances.

2.4.3 Worst-Case Impulsive Disturbances

A worst-case design objective to impulsive disturbances, i.e. n'(t) = nl6(t) is defined as
follows,

/ Y AT OO (1) + T () R ()] de
Jo(ts,Co) = ZW‘ max 22 T
no (¢ (s]

(2.38)
Substituting the closed-loop system responses given in equation (2.29), we have

nzTFIszz(t Co)rnno
o s

Jo(ts,Co) = Z W‘ rr717a
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The control problem for worst-case impulsive disturbances is to minimize the maximum
eigenvalue of I"'T S%(t s, C,)['", or equivalently its maximum singular value since the matrix
T Si(ts,C,)I" is symmetric and positive semi-definite. It is well-known that when singu-
lar values of a matrix are repeated, they are not differentiable with respect to elements of
the matrix ([23], p.288). With the relation 5%(A) < tr{AT A} for any arbitrary matrix A,
we can re-define the worst-case functional by its upper bound,

~ No o -\ 2
J&(tf: Co) < Jt‘r(tb Co) = Z W; tr { (FnT‘Sn(tf:Co)F”) }
i=1

Ny : ; i i 2
=YW tr{(S’(tf,Co)I" r ) }
i=1

where S*(ts,C,) is defined in equation (2.31). Derivatives of this upper bound are easy to
compute. Thus, we prefer this approximation based on the Frobenius norm to the exact
worst—case design objective. While it usually best to scale the disturbances through the I'"*
matrix, in practice, it is often convenient to allow an additional weighting matrix W, in the
matrix [T as TEWiIT"T. Equation (2.39) becomes

i iT
tf, Co) Z W1' tr {( (ty, Co)IY W‘F" ) } (2.39)
This corresponds to a bound on the maximum singular value problem

nzTWt 7 FIszz(t C )Fn Wz 2 ,,70
sl

1
Ja(t_f,co) = 5 Z W; H:r
i=1 o

The problem formulation for worst—case disturbances can also be extended to address
cases where the disturbances have a given deterministic time behaviour. In this situation,
the control problem is then to find an output-feedback controller for these specific types of
disturbances (e.g., steps, ramps, sinusoidal inputs of known frequencies, and others).

2.4.4 Worst-Case for White—Noise Disturbances

The usual convention for white-noise disturbances is that the components to the disturbance
vector 7*(t) are independent, and since E[n(t)n'T(s)] = Wi6(r — s), this implies that W}
is full rank. However, for the worst-case design we optimize over W! that are rank 1, thus
Wi = ninil corresponds to a disturbance of the form 7(£) = nip'(t), where p*(¢) is a scalar
white noise source of unit spectral density. Within this context we can write the two forms
of the worst—case cost functional for white noise (analogous to the two forms of the H? cost
for white noise). The first is related to the state covariance response evaluated at the time

iy

Np o i iT i, i
JEE(ts,Co) = 1 Z W:, max Eyil2 T(tf)Q zt(r’?,?wj‘!;‘ (tr) Rui(ts)] (2.40)

The second is an average of the worst—case state covariance response in the time interval
[0’ ty ]

Eq [ 12T (0)Q 2 (1) + w'T () R (1)) dt
tr {Wi}

N,
1 &
wce —_ (3
J3(ts, Co) = —2tf ;:1 Vmeft‘_x (2.41)
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By embedding the dynamics, both cost functionals can be written in the form

tr {r’iTsi (s, CoT" Wi}
Jalty, Co) =3 ZW K7 tr {W3}

The cost driven by such a noise corresponds to the maximum singular value of I"'T S (¢ s, C,)I™
and would be an upper bound to the regular H2 cost defined for white noise.

As before, we use the Frobenius norm of I'"*T S*(t s, C,)" to bound its maximum singular
value. The result is the same as given in equation (2.39).

Control-law synthesis using the above worst—case objectives and properties of their corre-
sponding solutions are not well understood and need further investigation. This is a subject
left for future research. However, it seems to have a potential of providing controller de-
signs that are insensitive to plant disturbances in applications such as model reduction and
closed-loop transfer recovery.

2.4.5 Design Features of Direct Optimization

Note that the performance indices given in equations (2.28), (2.32), and (2.38) are evaluated
to a finite-time horizon ¢y. The use of a finite time plays a significant role in the imple-
mentation of a reliable design algorithm for the optimum steady-state solution. It should
be recognized that the objective function is well-defined regardless of whether the feedback
control-law is stabilizing or not. Furthermore, a class of problems associated with command
tracking of neutrally stable or unstable target responses (e.g. step and ramp commands,
sinusoidal trajectories) is only tractable under the setting of a finite-time objective func-
tion, but not in the confine of a steady-state objective function where t; — oo. In practice,
whenever possible, steady-state results are usually achieved when the terminal time ¢y is
equal to five or six times the slowest time constant in the closed-loop system responses.

Besides the concept of design based on a finite terminal time {;, other unique and
important features have also been incorporated into the design objective function of equa-
tions (2.28), (2.32), and (2.38). First of all, this objective function is not the usual quadratic
cost function traditionally defined in linear optimal control. It is instead a weighted average
of quadratic performance indices evaluated over a set of design conditions (1 < i < Np).
Different weights are assigned to each plant condition through the scalar variable W, where
WI > 0. Of course, design for only one plant condition (with N, = 1) reduces to the usual
quadra_tlc cost function evaluated at the nominal design condition. The time-weighted fac-
tor 2%t allows us to impose directly a stability constraint on the closed-loop eigenvalues in
the H?2-optimal control problems. Namely, when a steady-state design has been achieved
and the optimum objective function is bounded, then the closed-loop system eigenvalues for
the controllable modes will have real parts less than —a*. Finally, the weighting matrices Q*
and R? are symmetric and positive semi-definite matrices. Note that our solution approach
to the minimization of the objective function J(ts, Co) is based on nonlinear optimization;
hence, it does not require the control weighting matrix R’ to be positive definite. In fact,
in some design problems such as command tracking and model reduction, a proper objec-
tive function contains only penalties on the tracking or model-matching errors and does
not include penalties on the control variables (i.e., with R* = 0). The above observation
further indicates the applicability of the design procedure in addressing the significant class
of solvable singular optimal control problems [33].
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2.5 Derivation of Cost Function Gradients

In this section, explicit gradient expressions for the cost functions defined in Section 2.4 with
respect to the controller matrix C, are derived. Results are given for both cases D.Dg, = 0
and Dy, D, = 0. To begin, we consider the following useful differentiation rules of the trace

function,
0 0

6 Co 8C‘O

In addition, differentiation of the exponential function with respect to its argument can be
obtained as follows. For a linear time-invariant system,

o(t) = A1)
¢(0) = I

tr {QC.R} = (RQ)" and ——tr{QCTR} =RQ

Then, )
00 (v _ 406y, 94
aco (t) - Aaco (t) + aco ¢(t)

Solving for 8¢/8C,, we obtain

S 0) = [ 60— 0)55-9(0) do

With the following definitions (as suggested in [18]),

~ [F o TiH,
Fi=| 00 0 (2.42)
0 0 F’L (n+r+n')x(n+r+n’)
G' 0
Gi=1|o0 I (2.43)
0 0 (n4r+n”)x(m+r)
- [ rip;,
ri=| o (2.44)
I (n+r4n’)xm/
Hi:[H;' 0 Din,ﬁ,] (2.45)
o .
0 I 0 (p+r)x(n4r+n’)
H‘i — Hi Di i
1 [ c 0 awa]p,x(n+r+n,) (246)
; D D¢
Di = [ e ] (2.47)
(p+r)xm!
. Dt
D}:{ su g} (2.48)
(p+r)x(m+r)
i i
2= [Dcu. 0];7’x(m+r) (249)



Tl = [I O]mx(m+r) (2.50)
00
Ty=|0 I (2.51)
00 (n+r+n’)x(m+r)
=000 (2.52)
0I O
(p+r7)x (netr )

Gradients of the respective cost functions can then be expressed in a convenient form.

2.5.1 Gradients of J,(tf,C,) (Case Ds,D. = 0)

Define
F" = F!+(G!+TC,D})C,H: (2.53)
I'" = T+ (G + TxC,D})C,D} (2.54)
H! = H}+ DiC,H} (2.55)
C*" = T\C,H} (2.56)
then
aJ No . o .
30t Co) = 2 Wi (DYTQHE + T RC™) X! (t7, Co) 3T
o i=1
+(Go + ToCoDh) T [M (b, Co)HGT + S¥(ty, Co)T W3 D3]
+T3 (M (t5, Co) HST + S*(ts, Co)T" WEDIT |(DiC,)T (2.57)
where .
Xi<tf,co) — / f e(F"-}-a‘I)tF/iW;FIiTe(F"+OziI)Tt dt (258)
0
; ¢ P ; : : ; 2 |
Si(ty, Co) = / TP DT (HRT QT | T ROR)e(F Dt gy (2.59)
0

Mi (tf, Co) — /tht e(F"+a‘I)T(t—U)(HéiTQHéi + CliTRcli)e(Fli.f_a"I)tIﬂi WgrliT
0
elF DT g5 gy (2.60)

2.5.2 Gradients of J(t;,C,) (Case D.D,, = 0)

Define
F" = Fi4GiC,(H.+ DiC,Ts) (2.61)
™ = r+aGie,nt (2.62)
HY = H}+ DLC,(H: + DiC,Ts) (2.63)
C" = TiC,(H:+ DiC,T5) (2.64)
then

N,

oJ L4 . . . . . . .

551-(1: £Co) = Wi ((DITQH! + TTRC™ X' (15, Co)(HE + DiC,T3)T
e i=1

+ GI M (ts,Co)[HE + DIC,T3)T + (GLC, DY) T M2 £, Co)T3 +GiTS(t 5, Co)Ti W, DIT
(2.65)
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2.5.3 Gradients of J,(t;,C,)

The upper bound J, based on the Frobenius norm is a continuous and differentiable function
of the controller design parameters. Computational effort in the gradients of Js(ts,Co) is
essentially the same as that for the cost function Ji(¢f,C,). Recall from equation (2.39)
that

N,
- 1 <& : . L2
Joltr,Coy =52 W; tr { (S'tts, co)r‘wgr’T) } (2.66)
i=1
Next, we derive the gradients of J5(ts,C,) for the cases Dy, D; = 0 and DDy, = 0.

2.5.4 Case D, D.=0
Using the definitions of F’, T"!, H': and C" given in equations (2.53)-(2.56), we have

= N,
0Jz(ts, Co S i i i
0l Co 5wy (DF QM+ TTRC™) Kiyslty, CHET
o i=1
(G, + ThCoD}) T Miys(ty, Co) HT + Ty Miys(ts, Co)(DIC,HE)T
G+ ToCo DT S(t )T Wi T S (84, Co )T W, DIT
+TY 84t s, Co)D*"WETT St ¢, Co) T W, ( D C, DE)T (2.67)
where

: iy TN P i P RPN
Xiys(ts, Co) = /D eF e DILiipiTgi(y . CADIWIDTeF 4+ Dt g (2.68)

; iy t " ‘ ) . ) . . . y )
M%/{/S(tf, Co) = /0 [J C(F +o' )T (t-0) (H‘l:tTQ'LH(I:'L + C/;TR-,C,,) B(F +a' )t
T'WETT S (ty, Co)T WD T e+ D70 gy (2.69)

2.5.5 Case D.D,, =0
Using the definitions of F*, i, H": and C”* given in equations (2.61)-(2.64), we have

8J5(ts, Co) Ny - .
—e T = LW {DEFQ HE + TT R'C™} Xy s(tg, Co) (HE + DiCoTs)T
i=1
+D{7CY { DY Q'HE + TTRIC™ | Xy s(ts, Co)T
+Go Miys(ts, Co)[Hj + DICoTy]" + (GoCoDY) Miys(ty, Co) T
+GTS by, Co)TWITT S (t s, Co) Y + GEC, D W, DIT (2.70)

2.6 Special Design Problems
For further study, we simplify the problem described in the previous section to a single

nominal plant condition (i.e., N, = 1). The plant state model is given by equations (2.1)-
(2.3) and has the following simplified form

z(t) = Fz(t) + Gu(t) (Plant dynamics)

z(0) = xzo (Initial conditions)

ys(t) = Hsz(t) (Measurement, variables)
z(t) = H(t) (Criterion variables)
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where we omit the superscript ¢ (i.e., i = 1) for clarity. Note that simplification has been
made to the measurement and criterion equations where direct influence from the control
and disturbance inputs has been omitted (i.e, Dsy = Dsy = Doy = Doy = 0). For a
deterministic control problem related to plant initial conditions, the disturbance inputs
w(t) are not considered in the controller synthesis. Furthermore, it is assumed that the pair
(F,G) is controllable, (F, Hy) is observable, and (F, H.) is detectable.

In the conventional LQR problem, one seeks a control-law u(t) that minimizes the
following cost functional

J(tys,u(t)) = % /0 “ [T ()Qx(1) +uT (£)Ru(t)] dt (2.71)

where the weighting matrices Q and R are both symmetric and positive definite. Solution to
this dynamic optimization problem would normally proceed by adjoining the state dynamics
#(t) = Fz(t) + Gu(t) as constraints to the cost functional J(¢;) using a set of Lagrange
multipliers A(f). From the stationary condition 6J(z,u, A,tf) = 0, we obtain the familiar
Hamilton-Jacobi equations for a two-point boundary value problem. The resulting optimal
control-law is given by u(t) = —R™'GTA(t). By defining A\(t) = S(t)z(t), and letting
t; — oo for the steady-state problem, one obtains a stabilizing static state-feedback control-
law u(t) = D.z(t), where the gain matrix D, is given by D. = —R™1GTS,,, and where S,
satisfies the algebraic Riccati equation

FTS.s+ SssF — SssGR™'GTSgs + HTQH, = 0. (2.72)

We now examine an alternative development to the above LQR problem in the per-
spective of direct optimization using a fixed controller design structure. The problem is
formulated as detailed in Section 2.4 and simplified to the case of a static output-feedback
design (i.e., with Co = D, or u(t) = Dcys(t)). Clearly, the state-feedback case of LQR
design is simply a special case where y,(t) = Iz(t), i.e., H; = I. Closed-loop system state
responses to initial conditions under a static output-feedback law are given by

z(t) = eF+CDHty - oFity (2.73)

The cost function J(ty, u(t)) in equation (2.71) can be rewritten as

J(tf, D.) = %E [xZS(tf, DC)QJO]

= %tr {S(tf, D.)E [xomg]} (2.74)

with S(tf, D.) is given in equation (2.31), and the initial condition vector z, can be treated
as a set of random variables with zero mean E[z,] = 0 and covariance E[z,zl] = W, > 0.

The control design problem reduces then to the minimization of J(ts, D.) with respect
to the static output-feedback gain matrix D.. That is,

8J(t;,D) 1

Using Kleinman’s lemma [32] and after some manipulation, we obtain
aJ(at_g Dc) — GT /'tf S(tf _o, Dc)e(pﬁ+ai1)o.Woe(Fli+aiI)To dO'HZ
c 0

t 1 i 71 1
+RD,H, / T eFHai DTy (FitatDTT g T (2.76)
0
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One could also obtain the above result using the general gradient expressions given in
equations (2.57) or (2.65) when we specialize to the case of a single plant condition and
Co = D..

Solution to the necessary condition for optimality

a‘](tf) DC) _

S5 =0 (2.77)

for the optimal gain matrix D, is difficult when the terminal time ¢; is finite. However, for
a stable closed-loop system matrix F’ and as ¢y is increased to beyond five or six times the
time constant of the slowest closed-loop modes, then

/0 Y S(ty — 0, D)eF T WoeP ™ do — (1 7, Dc) { /0 I Py T da} (2.78)
Under this steady-state condition, we can re-assemble equation (2.76) as
(RD:H, +GTS(ty, D)) { /0 ¥ Firainayy (T do} HT ~0 (2.79)
or, the term (HZ"DZR + S(ty, DC)G') is in the null space of the matrix
H, / b eFriraiayy (Fitei)To g
0

For the special case where H; = I (i.e., the state-feedback case) and W, > 0, we obtain the
familiar result of
D.~ —-R7'GTS(t;, D.) (2.80)

To show the correspondence between the matrix S(¢s, D.) and the Riccati equation in the
state-feedback case, we substitute equation (2.80) into equation (2.31) to obtain

t —
S(tf’ Dc) ~ L f e(F—GR lGTS(t_f:Dc))Tt (HCTQHC +S(tj, DC)GR_IGTS(tf, Dc))

e(F-GR™'GTS(ts,De))t 3y (2.81)

Multiplying the above equation by (FT — S(t;, D:)GR™'GT) on the left and adding it to
the same equation multiplied by (F — GR™'GTS(ts, D.)) on the right, we obtain

[FT ~ Sy, DC)GR‘IG’T] S(ts, Do) + S(ts, De) [F — GR™'GT5(ty, Dc)] -

e =CRICTS DTt IHTQH, + S(ts, D)GR™'GTS(ty, Dc))1e(F—GR*GTS<tf»Dc>>t];f
(2.82)
or
FTS(ts, Dc) + S(ts, De)F — S(ty, Do) GR™'GTS(ty, Dc) + HIQH, =
el FmGRTCTS DN [HTQH, + S(ty, DGRIGTS(ty, D)| eF~GR 167 S(ts.0)ty

(2.83)
The above equation reduces to the algebraic Riccati equation under a stabilizing state
feedback design when £y — oo,

FTSes + SssF — 8ssGR™'\GT s + HTQH, = 0, (2.84)
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where
Sss = lim S(ts, D.). (2.85)
tf——-»oo

Output feedback designs formulated in this manner yield the minimum cost functional
value over an expected distribution of initial conditions. Often, as in the conventional
state-feedback design, this expected distribution is assumed independent and uniform (i.e.,
Elzoxl] = I).

In the static output-feedback design case (where H, # I), analytical closed-form solu-
tions cannot be found in general for the design problem stated in equation (2.28). One must
resort to numerical techniques for the solution of the optimal design gain matrix D.. Note
that, in the above formulation, solution uniqueness as well as the optimal solution itself will
depend on the selection of the initial condition covariance matrix W,. Recently, Chen, et
al. {33] have provided precise conditions under which an optimal static state-feedback design
is unique. Non-uniqueness of an optimal state-feedback design can be used to explore other
design issues such as robustness ([37]-[38]).

One can also apply this special design case to the approximate worst—case cost. The
stationary conditions given by

aJs
dD. ~ 9D,

2
tr { (S(ts, DTWIT) } =0
become, for a sufficiently large ¢y,
02 (RDH, + GTS(ts, Dc)) ®*(t;)HT (2.86)

where ,
! " y 4 i
‘I)*(tf) :/ C(F +a I)UFWOFTS(tf, DC)FWOFTB(F +aTo do
0

One possible solution is given by the relation D.H; ~ —R™!BTS(t;, D.). Note that the
above equation is identical to the H? form except for the weighting matrix

t 1 i /% i
{ / T e+ DT W, TS (1, D)TW,ITeF 4t To dor} HT.
0

This is significant in light of the fact that a dynamic output feedback problem can also be
reformulated in terms of static output feedback [2] for linear time-invariant systems, thus
one can show that a similar weighting factor is responsible for the difference in H? and
worst—case solutions for the dynamic output feedback case as well. Clearly, this solution
is identical to the solution of the LQR problem when H; = I. Generally, solutions of the
above stationary condition for the optimal static gain matrix D, can be only be done using
numerical optimization.

2.7 Design Example Using a Simplified Helicopter Model

A comparison of designs achieved under the LQ, H?, and worst—case performance index is
dome for the case of state feedback. The state feedback result also establishes a baseline for
the output-feedback designs.

For output feedback, we compare designs from three different performance objectives:
LQG, H?, and worst—case. Because the disturbance set-up in the synthesis model is so
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important, this comparison is performed over 2 sets of synthesis models. The first set is
related to loop transfer recovery (LTR). The second set involves introducing fictitious noises
into each of the states of the plant model with different intensity levels. This is an attempt
to approach state-feedback results by improving the stability of the closed-loop system.

2.7.1 Helicopter Model

We consider a 1-dimensional model of the OH6A helicopter in hover mode (see Ref. [19])
with a longitudinal cyclic control §(¢). The vehicle states are pitch rate g(t), pitch angle 8(t),
ground velocity u(t), and position z(t). The system units are feet, seconds, and degrees.
The state model is

u(t) Xu X, —g O u(t) X; X,
ggg = A:)Iu qu g 8 ZEQ + Ag‘s 6(t) + _gl“ uw(t).  (2.87)
(t) 1 0 0 0] =@ 0 0

Values of the constants in the model matrices are X, = —0.0257, X, = 0.013, M, = 1.26,
M, = -1.765, X5 = 0.086, and Ms = —7.4080.

The vehicle is disturbed by a horizontal gust u,,(t). It is modeled as a white noise with
a spectral density of 18 ft?/sec and entered in all designs as well as in the calculation the
RMS gust responses.

2.7.2 Full-State Feedback Design

Initially we consider a full state-feedback controller to minimize the following quadratic cost
objective

J(ts, De) = /0 Y E[m2(t)+62(t)] dt (2.88)

which penalizes the ground position z(t) and the longitudinal cyclic control 6(t) equally.
The optimum design D is found to be D, = [1.9890, —0.2560, —0.7589, 1.00]. This solution
can be obtained both from the Riccati equation (2.84) and from direct optimization based
on equation (2.76). In the gradient search procedure, the function nelder in MATLAB
was used to minimize the following objective functions: the objective function J(¢s, D.) in
equation (2.88), the maximum singular value J5 for the exact worst—case design defined in
equation (2.38), and the Frobenius norm for the approximate worst-case design in equa-
tion (2.39). In all numerical cases, the terminal time ¢ is set equal to 512 seconds, which
meets the aforementioned criterion for being steady-state.

Table 2.1: Static State Feedback for the Helicopter Model

Eigenvalues Single-Loop Margins | Unit Gust

Open-Loop Closed-Loop Loop Phase Gain | Responses

-1.8891 -1.8461 x: 60.01° 861dB | z = 0.243

0 -1.1192 0. 41.4° -5.85dB | 0 = 1.497

0.0492 + 0.4608: | -0.4464 + 0.9774¢ 6. 60.2° -11.3dB | § =0.976
(¢=-0.106) (¢=0.415)

Design results are shown in Table 2.1. They provide the baseline for comparison with
the output feedback designs that follow. Time responses to a step command in ground
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position, Temg, are shown in Figure 2.2 along with the Bode magnitude plot of the transfer
function z(s)/Tema(s)-

Design solutions are identical in all three cases and are equal to those obtained from
the Riccati equation for the LQ problem. Note again that the LQ design is equivalent to
the minimization of an objective function evaluated to a uniformly distributed set of initial
conditions on all four rotorcraft states, i.e., with E[z,z.] = I. In the numerical optimiza-
tion, the initial conditions enter into the evaluation of the different types of cost functions
explicitly. In the minimization of tr{S(ts, D.)} for LQ and H? problems, (S(ty, D)) in
worst—case, and tr{S%(ts, D.)} in the approximate worst case, the maximum singular value
of S(ts, D) is found to be 5.58.

2.7.3 Comparison of Qutput—Feedback Designs

To make a valid comparison, the controller order must be the same for each of the LQG,
H?, and worst—case designs. Since the LQG design results in a 4th order controller with
no direct feedthrough terms, all other designs based on direct optimization will involve a
4th—order controller with D, set to zero.

The LQG formulation is set as to the form of the disturbance inputs it uses, though
being an observer-based design, it actually marries two different disturbance models. The
state-feedback gains were determined using a unit uniform uncorrelated distribution on the
initial conditions of all the rotorcraft states. The full-order observer part of the LQG design
assumes white noise for both process and sensors. The H? and worst—case problems will
also be formulated with white noise. We define the sensor outputs for the rotorcraft as the
rotorcraft position z and pitch angle 8. Sensor noise in the ground position measurement
z(t) has a spectral density of 0.4 ft2 sec, and for the pitch measurement 6(t) a sensor noise
of 0.4 deg? sec. The helicopter is excited by a horizontal gust of spectral density 18 ft2/sec.

An initial output—feedback design is performed using only the gust disturbance as pro-
cess noise. Compared to the results in Table 2.1 for state feedback, the RMS responses
to the gust input are higher in all three output-feedback designs (Table 2.2). Robustness
evaluation is conducted at the control actuator input. The resulting gain and phase mar-
gins are low. The maximum singular value of S in the LQG design is somewhat larger
than that for the state feedback design, and those from the H? and worst—case designs
are significantly higher still. The approximate worst—case design does indeed optimize to a
smaller 5(I'TST) than the other designs. This trend is maintained for the different sets of
disturbances. Note that “tuning” of the worst—case design to gust disturbances leads to a
poor step response characteristic. (Figure 2.4) Responses to command inputs for the LQG
design always matches corresponding responses of the LQ design.

2.7.4 Actuator Disturbance Augmentation

Here we augment the disturbance model to include a process noise entering into the control
actuator by letting I' = [I'; aG]. The power spectral density of this process noise is fixed
at 18 deg? sec. (Note that the gust disturbance power spectral density is 18 ft?/sec.) The
factor « in the disturbance distribution matrix is used to scale the effects of this additional
process noise relative to the gust disturbance, and has the sequence of values [0,0.1,1,10].
This process simply follows the traditional Loop Transfer Recovery (LTR) procedure in
LQG designs, to enhance the robustness in the actuator loop [39]. Table 2.2 shows the
expected improvement in robustness. Responses to the gust disturbance also improved
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Table 2.2: Traditional Loop Transfer Recovery Using Different Design Methods

LQG Designs

Fictitious Actuator
Noise Factor a 0.0 0.1 1.0 10.0
Mean Square X: 1.255 1.165 0.627 0.431
Responses : 6.617 6.125 3.034 1.888
10 Uy, 6 1.274 1.254 1.069 0.950
X: P.M. (deg) 31.66 31.56 30.83 30.51
G.M. (db) 5.04 5.02 4.90 4.88
6 P.M. (deg) 23.93 24.93 30.30 30.09
G.M. (db) [l 10.63,-4.110 | 10.95,-4.117 | 15.63,-3.569 | -3.75
& P.M. (deg) 29.84 29.90 40.62 52.49
G.M. (db) [| 10.66,-7.46 | 10.97,-7.638 | 15.62,-9.265 | -10.55
a(S): 28.57 28.81 30.66 31.56
&' sTy: 3.882 4.442 53.48 4111

H? Numerical Designs

Fictitious
Actuator Noise 0.0 0.1 1.0 10.0
Mean Square X: 1.276 1.182 0.627 0.431
Responses 0: 6.596 6.102 3.034 1.889
10 Uy s 1.269 1.244 1.069 0.950
X: P.M. (deg) 32.35 33.31 30.83 30.51
G.M. (db) 5.15 5.15 491 4.88
E P.M. (deg) 24.23 24.75 30.30 30.09
G.M. (db) || 10.45,-3.268 | 10.75,-3.296 | 15.61,-3.569 | -3.75
& P.M. (deg) 27.97 28.46 40.58 52.47
G.M. (db) | 10.49,-7.86 | 10.78,-7.940 | 15.60,-9.260 | -10.55
a(S): 12138 | 20527 2263. 725.3
(I 8Ty 3.889 4.447 53.52 4112

Worst-Case Numerical Designs

Fictitious
Actuator Noise 0.0 0.1 1.0 10.0
Mean Square X: 0.948 0.887 0.529 0.342
Responses é: 6.887 6.209 2.798 1.901
tO Uy & 1.398 1.343 1.036 0.965
X: P.M. (deg) 29.24 29.78 30.08 30.72
G.M. (db) 4.03 4.01 4.10 5.31
f: P.M. (deg) 24.75 23.56 29.40 30.36
G.M. (db) |l 11.46,-2.828 | 12.03,-2.785 | 18.86,-2.981 | -3.57
o P.M. (deg) 29.67 27.53 43.37 55.00
G.M. (db) || 11.49,-6.18 | 12.04,-6.514 | 18.87,-9.495 | -10.80
a(S): 9448. 16894 1840. 122.1
&t sr ): 3.562 4.072 50.40 3972

2
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when we increase the actuator process noise. Although there is no general tendency for
a(S) to converge toward the state-feedback result, this value did decrease somewhat with
increasing « in the H? and worst—case designs. For different values of «, the LQG and H?
designs show significantly different results in &(S) and in step responses to Zemg-

2.7.5 Fictitious State Noise Augmentation

In this set of designs, we augment the disturbance model with independent fictitious noises
entering into each of the plant states by defining I' = [I'; «l]. We set the power spectral
density of each fictitious noise at 18. Again the scaling factor « in the disturbance distribu-
tion matrix takes on a sequence of values [0,0.1,1,10]. The ensuing stability augmentation
improves the overall controller performance, with the parameter #(S), representative of
the state—feedback performance, trending toward the state—feedback value of 5.58 as « is
increased.

In the LQG design, increasing the process noises in each state will cause the estimated
states of the observer to converge more rapidly. As a result, robustness at the actuator
loop worsens, while the maximum singular value of S approaches that of the state feedback
design (Table 2.3). The single-loop robustness at the sensors improves, and the controller
is less attuned to gust alleviation in the position z (as in the H2-based controller designs).
The step responses and the transfer functions z/r.mg are equal to those of state feedback
as expected.

Results based on the numerical optimization of H? costs do not correspond to those of
LQG as well as in the previous case, though overall they have similar gust responses and
robustness margins. Increasing the relative emphasis of fictitious disturbances going into
the plant states caused no convergence of H? and LQG design properties.

The step responses in the H? designs (Figure 2.5) converge nearly to the state-feedback
response as « is increased, though with a slightly slower response and less overshoot. While
a(S) became smaller, did not settle to the state feedback value.

For the worst—case designs, increasing the fictitious plant state noises slightly improved
the overall disturbance rejection, while the robustness for all loops improved more substan-
tially. Of note is that the robustness at the actuator loop improved. The value of 5(S)
tends towards that of the state feedback case, while the step responses (Figure 2.6) also
converge to nearly the state feedback response. However, in spite of increased system sta-
bility, disturbing the initial conditions of the states did not result in as desirable overall
controller characteristics as augmenting with actuator disturbances. More favorable results
may be obtained with larger disturbance amplitudes.

2.8 Conclusions

Direct parameter optimization provides a powerful means to address a wide class of design
criteria and controller structures. The control formulation presented in this chapter shows
several common types that are well-suited for the framework of numerical optimization.
Development of reliable numerical optimization techniques is tied closely to the availability
of reliable computation of the cost functions and its gradients with respect to the controller
design variables. In all cases, evaluation of the cost functions presented in this chapter
and their gradients involves directly the computation of the following integrals of matrix
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Table 2.3: Singular Value Type Disturbance Augmentation

LQG Designs
Fictitious State
Noise Factor o 0.0 0.1 1.0 10.0
Mean Square x: 1.255 1.410 2.653 2.674
Responses 0: 6.617 6.769 9.130 8.913
tou, 6 1.274 1.215 1.072 1.017
X: P.M. (deg) 31.66 30.96 34.77 35.76
G.M. (db) 5.04 4.44 5.83 6.58
o: P.M. (deg) 23.93 22.76 2560 | 28.03
G.M. (db) || 10.63,-4.110 | 10.91,-2.806 | 12.83,-3.686 | 15.66,-4.06
6: P.M. (deg) 29.84 27.87 25.30 25.60
G.M. (db) || 10.66,-7.460 | 10.97,-8.10 | 12.84,-8.516 | 14.41,-8.63
a(S): 28.57 16.36 8.450 7.553
(7 sr): 3.882 5.647 126.0 11140
H? Numerical Designs
Fictitious State o
Noise Factor « 0.0 0.1 1.0 10.0
Mean Square  x: 1.276 1.488 2.656 2.053
Responses 9: 6.596 7.082 9.049 7.810
tou, & 1.269 1.187 1.064 1.040
x: PM (deg) 32.35 3256 | 3481 | 3484
M. (db) 5.15 4.66 5.83 6.20
0: PM (deg) 24.23 23.64 2582 | 2179
G.M. (db) || 10.45-3.268 | 11.25,-2.839 | 12.90,-3.698 | 16.22,-3.75
8 P.M. (deg) 27.97 28.83 2558 | 26.65
G.M. (db) || 10.49,-7.86 | 11.33,-7.703 | 12.40,-8.562 | 16.02,-8.60
a(S): 12137 | 1038, | 4300. | 7011
a(I"" ST): 3.889 5.690 126.1 11101
Worst-Case Numerical Designs
Fictitious State
Noise Factor a 0.0 0.1 1.0 10.0
Mean Square X: 0.948 0.777 1.597 1.432
Responses  #6: 6.887 5.714 6.720 6.090
touy, 6 1.398 1.403 1.049 0.967
x: P.M. (deg) 29.24 29.20 32.71 33.33
G.M. (db) 4.03 3.96 5.96 6.26
6: P.M. (deg) 24.75 22.97 28.69 30.93
G.M. (db) || 11.46,-2.828 | 11.40,-2.623 | 16.82,-3.637 -3.79
5 P.M. (deg) 29.67 27.79 28.88 29.86
G.M. (db) || 11.49,-6.18 | 11.43,-6.977 | 16.70,-8.596 -8.87
a(S): 9448. 6770. 296.0 9.523
(I sr): 3.562 5.221 113.1 10413
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exponentials
i
X(t) :/ e BeCT dr
0

and o
M(t) = / / eAv=9) BeC¥ DeFs ds du.
o Jo

Note that the matrix S(¢) has the same form as X(t). Efficient algorithms have already been
developed for the above integrals based on diagonalization of the system matrix. However,
they are prone to inaccuracies and lead to convergence problems in numerical optimization
when the system matrix contains defective degenerate modes. A reliable algorithm for
evaluating these integrals has been developed and its details are given in Section 3.3.

26



1.6 -

1.4
x 1.2+
D
i 1.0
D
1 0.8
a
M 0.6
0.
n
t 0.4
0.2 1
001177717771 T
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
10° » A
\
\ii
10-!
Y
\\
‘ 1072 1 e b 1
z(jw)
-’Ccmd(jwl - -
1073 : % ==
U 1]
10~¢ \\
4 N
N
1073
102 10-1 100 10! 102
w (rad/s)

Figure 2.2: State-Feedback Design for the Helicopter Model

27



"~ Step Responses

1.6
1.4 +
X 1.2 e » - T~ “
D //;/’.—'\\\\ N~
é 1.0 /'/' i, S
T o8-
g
réx 0.6
rtl -—-10.
0.4 — 1.0
0.2 y --01
—0.0
00— 771 1 1 T3
0O 1 2 3 4 5 6 7 8 9 10
Time (s)
Position Transfer Characteristics
100 —
- L B
\
10! —iH
\
\ al
1072 ‘x‘
=555 A
10~3 -
Y O -=-10
"N
10_4 _-.\‘ 1.0
NiJH-- 01
AN
N 0.0
10-5 A¢
10~2 10! 100 10! 102

Omega (rad/s)

Figure 2.3: H? Designs for Various Loop Recovery Weights

28



Step Responses

1.6
1.4 28R
4 N
X 124 /
D F
i 1.0 i e N
S J ==
4
1 08 7
a /
m 0.6 /
e s
n / -—-10.
t 0.4 . 1.0
0.2 - /4 --0.1
4 —0.0
0.0 T T T T T T T
0 1 3 4 5 6 7 8 9 10
Time (s)
Position Transfer Characteristics
10° X
W\ 1
\\
_ A
10~1 =\ a
E\
[\
1072 - \
E=vem]
zcmd(jw) \\
1073 + L
A
AN -—--10.
N
10_4 | \{i\ 1.0
L 11— — 0.1
0.0
10~°
102 101 100 101 102

Omega (rad/s)

Figure 2.4: Worst-Case Designs for Various Loop Recovery Weights

29



-

Step Responses
1.6

1.4 1

oo dgu~J M

Position Transfer Characteristics

0 -

10 T

N\
\‘

Ly

1071 T % T ]

1072 4= , eSS

1073

4
—
[en R

10~4

NI -- 0.1

b
<
e
o

1073
1072 10~1 100 10! 102

Omega (rad/s)

Figure 2.5: H? Designs for Various Stability Weights

30



e HoBop—Tu-—TJ

Step Responses

1.6 5
1.4
1.2 + -
7/ ~
—v“_’\"\
1.0 — // ” N ~ :"‘--—::—._:-—--"
/ £
/
_ /
08 ; /.’
4
0.6 - r/
/
-—-10.
0.4 1 l/ ,// 1.0
'l .«
0.2 74 -- 01
/4 —0.0
0.0 — T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Position Transfer Characteristics
10° PN .
\.‘\
\u
3
10~ A P
-‘\
A\
102 ‘;\
'.\. T
10—3 ﬁ, 1
] T
‘l 3N - —_10'
R
10—-4 —_— ‘\I\\\\ i 1-0
3N --0.1
N1 0.0
10-3 R
10~2 101 10° 101 102

Omega (rad/s)

Figure 2.6: Worst-Case Designs for Various Stability Weights

31



32



Chapter 3

Evaluating X(t) and M(t)

3.1 Introduction

Established methods for evaluating X(t) and M(t) are based on diagonalization of the
system matrices A, C and E in the exponential functions. Diagonalization is achieved
using a similarity transformation derived from the eigenvalue-eigenvector decomposition of
these matrices. It is further assumed that the similarity transformation constructed from
the eigenvector matrix is nonsingular. Let V4, Vo and Vg be the eigenvector matrices of
the matrix A, C and E respectively, then

A=VAAAVX1 , C=VcAcV51 , E=VEAEVETI, (3.1)

where A4, A¢c and Ag are diagonal matrices. One can express the exponential function of

et as

-1
eAt — eVAAAVA t_ VAeAAtVA_I. (32)

Application of this decomposition in the calculation of X(?) is shown below.

14
xX(t) = / AT BeCT dr
0

3
= Va { / eAATBeACTdT} V! (3.3)
0

where B=V, 'BV;. Advantage of this approach is that the exponential function of a diag-
onal matrix is also diagonal. In this case, time integration in X'(t) can be performed directly
by explicit integration of a product of scalar exponential functions. The resulting numerical
algorithm is quite accurate and efficient, provided that the transformation matrices V4 and
V¢ are not ill-conditioned. A similar procedure can also be applied to the evaluation of
M(t). Complete discussion can be found in Appendices C and D of [18]. Breakdown of
this algorithm will occur when the matrices A or C develop Jordan blocks. This situation
happens frequently in the control synthesis of flexible structures with densely packed modes
as demonstrated in the design example of Section 4.2.

Clearly, in order to have a reliable design algorithm for optimal low-order output-
feedback control synthesis [18], one must develop a robust numerical scheme to evaluate
matrix integrals of the form shown in X(¢) and M(t) in the case where the system has
defective eigenvalues.

’ . BN RTRNT 2oy Leg L iF
PRGE 3 ONTENTIUNAGLY BLAh 33

{7
g I ad

PRECEDING PAGE BLANK NOT FH.MED



3.2 Alternative Approaches for Solving X(t) and M(t)

One simple approach is to evaluate
t t rv
X(t) =/ eA"TBeCTdr |, M(t) 2/ / eA(v=9) Be®¥ DeP* ds dv (3.4)
0 0 Jo

directly using a numerical quadrature. Efficiency of numerical integration techniques is
poor; especially when it requires small integration step size for satisfactory accuracy in
the case of stiff system matrices A, C and E. Another possibility is to use some types
of algebraic Lyapunov equations for the solution of X(t) and M(t). For example, it can
be easily shown that the matrix X(¢) can be obtained from the solution of the following
Lyapunov equation,

AX(t) + X()C = [/ Be|. (3.5)

Solution of equation (3.5) exists if Ai(A) + A;(C) # 0. As A(A)+ A;(C) tends toward zero,
the solution accuracy will degrade on a continuous basis. Furthermore, there are many
situations encountered in practice where this scheme will run into difficulty. For example,
when A = CT and the system matrix has poles at the origin. Thus, for practical purposes
X (t) cannot be solved from a scheme based on Lyapunov equations.

The Lyapunov equation for M(t) is even more poorly behaved. By changing the order
of integration, the double integral in M

i v
M :/ / eA(v=%) BeC? DeP* ds du
o Jo
can be re-written as

t q
M= /0 { /(; e ge=Cr dr} eCtDeE -9 dq

Because the matrices A, B, and C are time invariant, one can rewrite the convolution

integral as
t A B 0
At Clr—t) 3. _
/Oe Be dr [IO]eo:p{[O _C}t}{l]

Applying this to the inner integral of M, we obtain

M=[:{[IO] exp{['(;1 _BC}q} [(I)]}eCtDeE(t_‘”dq

This form is used to derive the Lyapunov equation for M.
With the above equation, we write

Lt{[l 0] exp{{ g _BC } (t—q)} [(I)]}eCtDeEquq
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e fpaof[ 2 2] (1]
ffren{[§ o) 1]

At [t At-T)p,
Using the relation exp A B tp=|° loe _B;f Crdr , we have
0 -C 0 €
ME = - [{ /  At=1) e=Cr dr} eCtD] + / t Be~C(t-9)¢Ct DeFa gq
0 0

i t—q
+ /0 A {/0 eAllt-a)-m) ge—Cr dr} et De" dg

= B/t e~ Ct-DeCt peka gg [{/t eAlt-m) Be=Cr dr} eCtD]
0 0

+A/0t{[1 0] exp{{ g _BC ] (t——q)} [ 2 ]}eC‘DeEquq

Finally, we can assemble the Lyapunov equation for M as

t ¢
ME — AM = B/ e~ Cl-9eCt DeFa dq — [{/ eAlt=7) Be=Cr dr} eC‘D]
0 0

In most applications, the matrix E is equal to A and hence renders the Lyapunov equation
for M unsolvable.

3.3 Matrix Exponential Approach

Another possible approach is based on the direct use of the exponential of a matrix. It is
well-known [23] that convolution integrals involving matrix exponentials, as represented in
the matrices X'(t) and M(t), can be derived from the matrix exponential of an augmented
matrix. It can be shown that the matrix X' (¢) can be derived from the upper-right partition
of the following matrix exponential,

X(t) = A [ 1 O]ea:p{[“OA g] t} m (3.6)

Thus, computation of X'(t) now involves the computation of a matrix exponential. A reliable
algorithm for computing the matrix exponential is given in Section 3.4.

In a similar fashion, one can express the matrix M(t) in terms of a submatrix of a
matrix exponential. To see this, we start from its definition

t v
M(t) = / / eA=9 BeC¥ DeP* ds dy
0o Jo

¢ ¢
= / e~ As {/ e BeCv dv} DeP* ds
0 s

t 8
—/ e~ s {/ et BeCY dv} DeFs ds (3.7
0

t

fl
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Let’s perform a change of integration variable v = ¢ — r. We have,
t t—s
M) = / e~ {/ A=) BeClt=") g } DePe ds
0 0
= — /0 eAt=s) {/t_s e AT Be~CT dr} e“tDe~EE=9) (1 — 5) et
t 0

= /t efe {/q e~ A" Be=Cr dr} eCtDe~F9 dgebt
0 0

= /t {/q eAa=T) BeCt/2e=Cr dr} eCt2 DePt-9 gq (3.8)
o Wo
Notice that part of the integrand in equation (3.7) delimited by braces can be replaced by

terms involving the exponential of an augmented matrix. This follows directly from results
developed for the matrix X(t). With this substitution, we obtain

M(t) = fot{[l 0] exp{[ ’g Bi‘;ﬁ Jq} [ ? ]}eCt/ZDeE(t_q) dg
/Ot[I 0] exp{[ 61 Bi(’;/z ] (t——q)} ([ (I) jl eCt/2D) B4 dg

A Beft? ¢ 0
=[I00]exps | 0 —C €°¥2D [ty | O (3.9)
0 0 E I

In this section, we have shown that the matrices X'(¢) and M(t) can be formulated in terms
of solutions of matrix exponentials. Their evaluation depends therefore strongly on the
accuracy and reliability of numerical methods for computing matrix exponential. We will
present one such algorithm in Section 3.4. However for computational expediency, special
consideration must also be taken to ensure efficiency of the overall scheme when the upper
limit ¢ is large and one of the matrices A, C or D is unstable. Also one must economize
memory requirements associated with high dimensionality of the augmented matrix when
computing the matrix exponential. These considerations will be elaborated in Sections 3.6
and 3.7 where we give precise algorithms for the computation of the matrices X' () and
M(t) respectively.

3.4 Numerical Method for the Matrix Exponential

Several numerical methods are available for the computation of the matrix exponential [22].
Among these, an approximation method based on Padé series is found to be satisfactory [23].
An important component in any numerical routine for matrix exponential is the scaling of
the matrix argument prior to the series calculation. Due to the simple result that et =
(e4/2)2, a scale factor in terms of powers of two (i.e. 2™) is often used. In this scheme, one
can recover the actual value of the original matrix exponential by performing m squarings
on the matrix exponential of the scaled matrix. The index m is determined based on the
desired size for the scaled matrix. In our algorithm, scaling is applied to the original matrix
until its oo-norm || A||, falls below 1/2.

As mentioned above, the preferred series approximation in our computation of the matrix
exponential is the Padé series. Let’s review some of the unique features associated with the
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Padé series for the case of a scalar function F(z). On its most basic terms, it is a rational
function of z of a preselected order that approximates the function F(z). For a given choice
of the order of the numerator (say N) and of the denominator (say M), the Taylor series
representation of this Padé series must match the power series representation of F(z) for
the first (N + M + 1) terms. Namely,

21. OA Z.
E o Bizt

In fact, the most common form of the Padé series is known as the diagonal sequence where
the numerator and the denominator have the same order (i.e. M = N). While it is known
that the Padé series for the matrix exponential F(z) = e* converges only slightly faster than
the Taylor series for a scalar argument, the improvement becomes significant for a matrix
argument. In the matrix case, Padé series involves computation of a numerator matrix
N(At) and of a denominator matrix D(At). For a diagonal Padé series of order N, we have

F(z) ~ PY(2) = (3.10)

(2N — 1)I N! (2N — 2)I N!

NAY) = T+ omiw - ehya (v = 2)'(/”)2
(2N - i)! N! -
+---+(2N), TV = )(At) (2N) e (AT
and
_ (2N —1)! N! (2N —2)! N!
D4t = T-Goaw ot eayar — 2 A
; (2N =9I N! i 2N
—t (=1) (2(N)' '(2[ Al (A 4+ (= I)N(2N)' (AN
The matrix exponential is simply given by
et = DI (At) N (At) (3.11)

Invertibility of D(At) is ensured by proper scaling of the matrix argument At.

Another important consideration in the Padé series is its length N. Assuming that
the matrix At has been scaled such that ||At|l, is less than 1/2, the parameter N can be
choosen according to [23] such that

) N2
2+ (2N)!( (21)v oy =€ (3.12)

where ¢ is a given desired tolerance for accuracy.

With N determined in the above manner, the nominal error in a Padé series approxi-
mation can be thought of as the exact calculation of a matrix exponential for a “nearby”
matrix (At + E) where F is the error matrix with ||E|lo < €||At|loo. The relative error of

the approximation is bounded by the following inequality,

||e(At+E) _ CAt”oo

T S ellAtfloet (3.13)

Thus, reducing the co—norm of the matrix At would indeed improve the numerical accuracy
of the matrix exponential. It has also been shown that methods by series approximation
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yield better accuracy if the matrix argument has been preconditioned [29]. Additional
improvement may therefore be gained by first preconditioning the original matrix. Another
immediate benefit of lowering the co-norm of the matrix being exponentiated is that the
actual scaling factor m needed would also be smaller; thereby resulting in a fewer number of
matrix multiplications in the squaring procedure. As usual, preconditioning a matrix tends
to bring singular values of that matrix closer together (i.e. lower the condition number),
thus avoiding situation where the scaling factor is predominantly determined by a few large
singular values, and causing significant loss of precision related to the set, of small singular
values. The most common method used in the precondition of a matrix is Osborne’s method
[25], which minimizes the Frobenius norm of that matrix (and thus indirectly lowering its
oo-norm). However, extensive tests conducted so far seem to indicate that preconditioning
of a matrix does not yield significant reduction in the oo-norm and a smaller scaling factor.
However, Osborne’s method is relatively light in terms of computational burden. The
procedure of preconditioning a matrix is nonetheless recommended from the point of view
of improved accuracy ([26], [29]).

In the implementation of our design algorithm for optimal low-order controller synthesis
[18], a value of ¢ = 10™® has been selected, requiring therefore a 4-term Padé series (i-e.,
N = 4) in the evaluation of the matrices X*(t), £'(t) and M!(t) of equations (2.58)-(2.60).
Additional considerations in the implementation of the proposed method for computing
X(t) and M(t) are given in Sections 3.6 and 3.7.

3.5 Preconditioning With Scaling and Rotation

We can liken the original cost function calculation method (that of an eigenvalue-eigenvector
decomposition) as a method that does best when the eigenvalues are widely scattered (at
least, distinct). The matrix series calculation excels when a matrix is homogenized. For the
particular use in a controller optimization scheme, the matrices encountered usually have
widely spaced eigenvalues, but degeneracies in these matrices may still exist.

Scaling the argument matrix to a Padé series to render its oo-norm less than 1 /2 ac-
commodates a large magnitude eigenvalue (stable or unstable). This same scaling would
lead to roundoff errors for a small magnitude eigenvalue in the same matrix. This potential
problem renewed interest in finding some method that went beyond Osborne’s method in
homogenizing a matrix. We attempt such a method by combining the row and column
scaling of Osborne’s method with an inverse Jacobi rotation.

Suppose that one chooses a pair of columns and their corresponding rows in a matrix.
Can one find a single rotation and two scaling terms to reduce the Frobenius norm of the
matrix? Consider

A1 = T'AT

cos 8 sin 8 X
o1 - o2 AH Al]
sin @ cos @ .
AJ"' AJJ
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—oosinf@ --- oocosé

we want to determine a rotation angle # and two scaling terms o1 and o2 such that

min [T, A;T;
0101 02

P

It would then be hoped that a succession of these transformations would lead A, toward a
minimum Frobenius norm value. The Frobenius norm was chosen to see if an easy means
for determining 0, ¢, and o, was even possible. Unfortunately, there is no easy means for
finding these scalings or rotations. The amount of work needed is significant, and thus this
approach was abandoned. It seemed that, among all the alternatives, Osborne’s method
was still the best.

3.6 Detailed Algorithm for Computing X(t)

As seen in Section 3.3, the matrix X'(¢) can be evaluated in terms of a matrix exponential
as shown in equation (3.6). Conceptually, it is a simple and straightforward procedure to
compute the matrix exponential of any arbitrary matrix using the Padé series discussed
in Section 3.4. However, it becomes a nontrivial task when we try to implement an effi-
cient algorithm that examines carefully the issues related to accuracy, speed and memory
requirements. To understand the basic difficulties, consider in detail the components of the
matrix exponential used according to our problem defined in equations (2.58) and (2.59)
for the matrices X*(ts) and L(ty)

erp {[ _OA g ] t} = { e_OAt e_ztél:(t) ] (3.14)

where A = CT = F" +o'I. Clearly, if the system matrix A is stable (i.e. all the eigenvalues
of the matrix A have negative real parts), one could easily encounter numerical overflow
when evaluating the term e~ even though the matrix integrals X'(¢) and £(t) are perfectly
well-behaved. The overflow problem occurs most likely in the final squaring process. To
artive at a feasible approach in the evaluation of X'(t), one needs to examine in detail the
steps taken in arriving at the matrix exponential of the original matrix starting from that
of a scaled matrix (i.e. in the squaring process).

Let’s assume that one has scaled the input matrix A by AAt where At is a reasonably
small time interval given by At = t/n = t/2™. Thus, we need to first evaluate

exp {[ ‘OA g ] At} where At = t/n = t/2™.

For notation convenience, we define
-A B _ | e7ABt gmAAL [AL AT BeOT 4y D E
exrp {[ 0 C :l At} = [ 0 (Cht =10 £l (3.15)
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Furthermore, let W = ezp(AAt) = D~1. Now we can write our result as follows,
X(t)=W"D" 'E+ D" ?EF + D" ?EF? 4 ... + EF™), (3.16)

or
X(t) = W[E + WEF + W2EF? + --- + W 1EF™1). (3.17)

The above results are produced by performing m squarings of E ] and taking the

0 F
appropriate submatrix for X(t). In our application (cf. equations (2.58)-(2.59)), the solution
would therefore involve products of matrices of size 2(n + r + n’). Close examination of
equation (3.17) leads to the following algorithm involving only product of matrices of size
(n + r + n') with the final result achievable in m steps,

Step 1: P = W, Ql = E, Ry, = F
Step2: P, = P}, Q2 = Qi1+ PRy, Ry = R}
= w?, = E+WEF, = F?
Stepm : P, = Pg-z,—l) @m = Qm-1, Ry = R?n—l
= WH + P 1Qm-1Bm_1, = F"

Finally, X(t) = WQmn. It should be noted that one can *absorb” this extra factor of W
(= e”4%) into the matrix Q; without any change to the above algorithm (i.e. starting the
above algorithm with @; = WE instead). This removes the need to retain the matrix W
throughout the computation.

Finally, one notes that the terms P; or R; for (i = 1,m) may underflow and become a
null matrix for some ¢ ; in particular when the scaling factor is large (i.e. m large). When
this situation happens, one can simply truncate the series calculation for X'(¢) up to the i**
step in the above algorithm since all of the significant (and nonzero) terms have already
been accumulated into the matrix Q;.

3.7 Detailed Algorithm for Computing M(t)

Here the numerical algorithm is a bit involved compared to the one given for X’(t). This is
largely due to the increased complexity of the argument of the matrix exponential. Following
the procedure described in Section 3.6, let’s perform a scaling upon the input matrix A by
AAt such that computation of the matrix quantities Mo, H,J, P,U and W = V! is well-
behaved. These quantities are defined from the following matrix exponential,

A BeC? 0 P HeS? M,
exps | 0 —C €C2D |Aty =] 0 vV  eCt2y (3.18)
0 0 E 0 0 U

Due to the possible numerical underflow in the matrix e©*/? for large ¢, the matrices H and
J are computed directly from the following definitions,

At
H-= / eAT BeCT dre=CAt (3.19)
0
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and

At
J = e—cm/ eCT DeF™ dr (3.20)
0

However, the computation of M, in equation (3.18) can still underflow due to its explicit
dependence on e€*2. For the calculation of the matrix M(t), ideally it can be obtained from
m squarings of equation (3.18). If carried out in this manner, potential numerical overflow
is eminent since, according to our equation for M(ts) in (2.60), we have AT = C = ET =
F* + ofI. Hence, if the matrix C is stable, then the matrix exponential e~¢t = V" will
become unbounded. To bypass this difficulty, as in the calculation for X'(t), one needs to
conduct the squaring algorithm explicitly. It can be shown that the matrix M(t) can be
computed as

M) = PP IMo + PP 2 MU + PR3 MU + - + PMU™ 2 4+ M U™

+ HW?J + HW3JU + PHW?3J + PHW*JU + PPHW*J +--- + P" 2 HW"™J (3.21)

This formulation no longer involves the matrix V. The above series for M can be decom-
posed into two parts—one that contains the matrix M, and the other that does not. The
terms involving M, can be thought of as

[10]“) A{}} [?] (3.22)

which can be performed by m squarings. The remaining terms involving H, J, W, P, and
U are computationally intensive and are of the form

n—-2n-—2
SN PPHW*YH U7 where 2+i+j <n. (3.23)
i=0 j=0

Without the restriction that 2 + 7 + j < n, this would have been formed as the product of
two easily computed series,

(H+PHW + PPHW? + .. YW2(J + WJU + W2JU? +..) (3.24)

An efficient procedure for computing the final matrix M(t) is to merge both the easily
computed portion given in equation (3.22) and the more difficult series in equation (3.23)
into a sequence of m steps:
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Step 0 :

M,

Step 1:

Ml = PMo + MOU
+HW™J

Step 2 :

My = P2M1 +M1U2
+H1W"“2J1

Step 3 :

M3z = PAMy + MU*
+H,W™ 8],

Step j :

MJ — sz_leAl + Mj_lej_l

+HJ’,1W"+2“2" Ji1

Step m :

Mp = Pn/2Mm—1 +Mm—lUn/2

+H —1W2Jm—1

Further simplification of the above algorithm can be achieved if we make use of the fact
that we have A = E = CT (cf. equation (2.60)) and therefore U = P = WT. If in addition
W™ is zero (or effectively so), restriction on the indices 7 and j of 2+ ¢+ j < n in equation
(3.23) becomes inconsequential. Hence we can express

n-2n—-2

H

H,=H
+PHW
+P2H1W2
H3 = Hy
+P4H, W4
H; -—_H_.,;l

J

‘]1 = J
+WJU
Jo=J;
+W2,U?
J3 = Jg
+WH U4
Jj = Jj-1

W27 g P

Jm = Jm—1

+Wn/2Jm_lUn/2

p2

P4

PS

P?

Pﬂ

U2

U4

UB

v?

U‘n

W2

W4

WS

w?

W‘n

where the final matrix M(t) = My, + HpW?2J,,. Due to potential numerical underflow,
the term W~2 is not accurately obtained from the product W*V? where V = W~1. Indeed,
one needs to recompute the term W™t2-% at each step of the above algorithm. This could
become the major drawback in our scheme even though we have used an efficient matrix
exponentiation routine that computes W* requiring at most 2logx(i) matrix multiplies.

SUS PHWPHHJUT = (H + PHW + PPHW? +-- )W*(J + WJU + W2JU? + -+ )

i=0 j=0
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a7 T[]
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() (J+WJU +W?2JU? +-.+)



This algorithm can again be computed in m steps as follows,

Step 0 :
Mo H J

Step 1:
My =PM,+ MU H,=H+ PHW J=J+WJU

Step 2 : )
My =P2M; + MU Hy=Hy+P*H,W? Jy=J,+W?J,U?

Step 3 :
Mz = P My + MuU* Hs=Hy+ P H,W! J3 = Jo+ WiJIU*

Stepj:

i—1
M; =P M, Hi=H;-y Jj=Jdi0
+M; 1 UP” +P¥ 7 H; W7 +W¥7 g, U¥
Stepm :
Mm = Pn/sz—l Hm = flmym—1 Jm = Jdm-1
+Mm_1Un/2 +P"/2Hm_1W"/2 +Wn/2Jm_1Un/2

If, for some index j # m, W' (and likewise U* and P') is zero or nearly so, then the
calculation of M(t) is reduced to M(t) = H;W?2J; since M; = 0 where i = 27,

3.8 Basic Test Results

A direct evaluation of X and M on a degenerate system matrix provides a clear under-
standing of the severity of the errors in the diagonalization method. Consider

[ 0.5 025 0.333
F = 1.0 -15 0.0
| -1.5 075 -1.0

[ 1.0 7.0 4.0
r = | 30 90 60
| 5.0 2.0 8.0

[ 69.0 17.0 41.0
HTQH.+CTRC' = | 170 510 180 |,
| 41.0 180 74.0

where F' is constructed under a similarity transformation from a core matrix A and a
transformation T,

-1.0 1.0 0.0 1.0 10 -10
A= 00 -10 10 |, T=]| 20 -20 20 |,
00 00 -1.0 =30 3.0 3.0

Namely, F = TAT~!. In the X computation, the results were

58.37 58.97 30.58 61.90 66.04 19.98
Xaiag = | 58.97 57.83 4591 |, Aopuse = | 66.04 71.96 24.70
30.58 45.90 00.00 19.98 24.70 31.80
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As one can see, there is really no correspondence between the two results. Furthermore, in
comparing the results for M, we have

-3.623 x 10° 4.997 x 10° —7.495 x 10°
Maigg = | 3.081 x 1017 6.162 x 1017 —9.244 x 107
2.054 x 1017 4.108 x 1017 —6.162 x 1017

)

2211, 2519. 1230.
Moobust = | 1860. 2146. 1153.
1817. 2133. 1475.

With these large discrepancies, it is clear that design optimization based on the diagonal-
ization method would fail when defective eigenvalues appear in the closed-loop system.

3.9 A Two-Mass-Spring Design Problem

In this model, the open-loop system has defective eigenvalues at the origin; thus success
of the diagonalization-based approach depends on the removal of this degeneracy through
feedback. Hence, selection of the initial controller guess plays a key role. We consider two
setups to illustrate the problems encountered by the algorithm based on diagonalization.

u,w
) U

Y2

k

Mass 1 W Mass 2

Figure 3.1: A Two-Mass-Spring Mass System

Equations for the dynamic model are given below.

miyji =k(y2— 1) +utw

. 3.25
may2 = k(y1 — y2) (3.25)
or
1751 1 0 0 0 15 0
dlwm|_|0 —k/mi O k/m vi 1/my
a Yo =1 o 0 1 0 Yo + 0 (’LL + w) (3.26)
Yh 0 k/mg 0 —k/mo || 4} 0

where m; = mg = k; = k; = 1. The problem is to control the displacement of the second

mass by applying a force to the first mass as shown in Figure 3.1. At the start, it is simple

to verify that the basic open-loop system has a pair of defective eigenvalues at the origin.
We have chosen a second-order controllable canonical form for our controller model,

0 1 0
A = ; B =

C = [Cn Cy; D = [Dy]
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The control design problem is to minimize the H2-norm of the following closed-loop transfer
function Ty, between the disturbance w and the displacement y2 of the second mass using
the controller design parameters Ag;, Az, C11, Ci12 and Dy). From the initial design guesses,

A21 = —2,A22 = —I,Cu = 0,012 = 0.5 and D=0
The original method based on diagonalization in SANDY [18] converges to the optimal
design gains,
A21 = —0.8571,1422 = —0.9258,011 = 0, 012 = —0.4535 and D11 = —(.2449

and the optimum value of || T, ||§ = 7.71838215122. A summary of the resulting closed-loop
eigenvalues is given in Table 3.1.

Table 3.1: Closed-Loop Eigenvalues of the Two-Mass-Spring System
| Eigenvalue | Damping | Freq (Hz) |

-0.2290 + 0.3397i| 0.559 0.0652

-0.1553 £+ 0.8480: 0.180 0.1372

-0.0786 £+ 1.29501 0.061 0.2065

One cannot initiate the search using a compensator design of zero gains (i.e., As) =
Az = C1y = C12 = Dy = 0) because, in this case, the closed-loop system would have two
pairs of degenerate eigenvalues at the origin; one for the rigid-body mode and the other from
the open-loop compensator poles. The early algorithm based on diagonalization recognizes
that Jordan blocks are present and the numerical search is halted. Detection of a Jordan
block within SANDY is done by looking at the condition of the eigenvector matrix. If this
condition goes above 10'? or its inverse is less than 10712, the design search is terminated
with a failed status. Condition of the eigenvector matrix influences the accuracy of the
matrices X and M. At some point, the loss in accuracy will affect the overall optimization
process. To alleviate this problem, it was suggested that one simply re-start the design
algorithm with any compensator design (stabilizing or not) that initially produces a non-
degenerate closed-loop system. This approach does not provide a satisfactory solution in
general.

A more insidious possibility is exemplified by the following initial design guess,

A1 = —2,A22=-1,C11 =0,C12=0and D;; =0

It turns out that this case of Jordan blocks is not detected from the condition of the
eigenvector matrix. The diagonalization-based algorithm fluttered around the initial point
and finally terminated with no improvement to the original design guess. The condition
number of the eigenvector matrix associated with this problem was 2.302 x 108, which would
generally be considered acceptable.

The robust form of the algorithm allows convergence of the controller gains in all the
three initial guesses shown. The final result is the same in each case and equal to

A21 = —0.8571, A22 = —0.9258,011 = 0,012 = —0.4535 and Du = —0.2449.

The result is the same as the one determined from a successful run using the diagonalization
algorithm. A history of the inverse of the condition number of the eigenvector matrix for
the initial design guess of

Ag) = —2,A2 = —1,C11 =0,C12 = 0.5, and Dy; =0,

45



0.8 1
0.7
0.6

054 ™

1

Condition 047 ..

0.3 .
0.2 N
s
0.1 . e,
M—F—\M
0.0 T | | T | T T I
0 40 80 120 160 200 240 280 320
Iteration

Figure 3.2: Behavior of Condition Number over the Entire Design Optimization

is shown in Figure 3.2. One can see that condition of the eigenvector matrix varies signifi-
cantly over the entire run. Conceivably, the inverse condition number may jump back to a
low value in a typical design iteration. Not very visible in this plot is the value at the first
iteration of 1.8 x 1078 for the chosen initial guesses. After the first iteration, the inverse
condition number jumps to 0.166.

The main difference between the robust (Pade-series-based) form and the diagonalized
form is in the CPU time of the overall computation. Results are obtained for a VAX/VMS-
Workstation DEC-3500 as follows: CPU time of 19.59 seconds with the algorithm based
on diagonalization, and 97.36 seconds using the proposed robust algorithm. The increase
in computational load is expected and constitutes the basic trade-off between reliability
and speed. The proposed algorithm is more reliable and with this advantage does take
somewhat longer in computational time.

Although a simple fix to the diagonalized form is to start with a non-degenerate closed-
loop system by using a different initial compensator design, it has been found that the
algorithm could occasionally break down due to the presence of near degeneracies. Thus,
for a reliable design method, the solution algorithm must treat degeneracies as a common
occurrence. This situation is more evident in the optimal output-feedback control design for
high-order structural models with closedly packed flexible modes, and in the design proce-
dure of closed-loop transfer recovery. These cases include a situation where two nominally
independent modes appear as a Jordan block due to roundoff error in a higher order system
(usually 30%*-order or higher).

For efficiency, the numerical algorithm currently implemented combines the robust al-
gorithm with the faster diagonal form through a “switch” based on a threshold of 2 x 10~5
in the inverse condition of the eigenvector matrix. This value is found to be adequate in
detecting defective degenerate cases and computational accuracy of the run is improved by
the intermittent calls to the robust form.
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3.10 Degeneracy During Optimization

Presented here is a model reduction problem that develops a Jordan block during the
optimization process [31]. Consider a model with closely spaced modes,

-1 0 0 1.1
F = 0.0005 —1.000001 0|,P=|12|,H=[21 2.2 23], D=0
0.0005 0.0005 —1.00001 1.3

Parameter optimization is used to reduce this model to a second—order system by minimizing
the H2-norm of the error. Starting with the following arbitrarily chosen guess

—0.9995 1 —1.414 B B
AC_[ . _1], Bc_l 1.414], C.=[-56160], D, =][0]

The optimization converges to the following reduced—order model,

~1.027  0.012 —1.440
A‘[ 1.436 —1.625]’ B‘{ 1.542 ] C=[-5627 —0.107}, D=[0]

with a final cost function of 4.76 x 10~7. Diagnostics associated with this run indicate that
while the gains were “optimized”, the solution is far from the optimal solution. Inverse con-
dition number of the eigenvector matrix is 1.26 x 10~° indicating the presence of degenerate
modes.

This degeneracy is confirmed when the optimization was run using the robust form for
the gradient computation. The optimized cost function now has a value of 2.38 x 10~12 which
is much smaller than that achieved under the diagonalization algorithm. In addition, inverse
condition number of the eigenvector matrix is now 9 x 10~% indicating that degeneracies
occur through the design optimization.

3.11 Conclusions

Numerical algorithms for computing matrix exponentials and integrals of matrix exponen-
tials have been developed to handle cases where the system matrix has defective eigenval-
ues. Special formulation of these algorithms enables reliable and efficient computation of X
and M. These algorithms have been incorporated into the computer-aided design package
SANDY for synthesizing optimal output—feedback controllers. Numerical optimization com-
bined with the given algorithms in the evaluation of the cost function and its gradients with
respect to the controller design parameters is shown to have well-behaved convergence even
when the closed-loop system becomes degenerate. Reliability of the algorithm is further
demonstrated using typical design problems encountered in control of flexible structures.
Clearly, this algorithm, when combined with a previous one based on diagonalization, would
enhance significantly the overall reliability of optimal control synthesis using parameter op-
timization, thereby providing an effective automated design environment for multivariable
control synthesis.

To further improve the efficiency of the robust algorithm, a hybrid form combining the
benefits of both the diagonalization—based form and the robust form has been developed.
There are two major components to this algorithm. The first one is a means of reliably
decomposing the system matrix into two parts: a diagonal block containing nondefective
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modes and diagonal subblocks containing the defective portions. Details are presented
in Appendix A. The actual calculation of X and M are performed in the second step,
consisting of elements in the diagonalization-based form, the robust form, and new cross—
term calculations. Details are discussed in Appendix B.
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Chapter 4

Control Design for a Large Space
Structure

4.1 Introduction

In this chapter, we present a control design problem that poses significant difficulties to
the early design algorithm based on diagonalization. The system model contains numerous
densely packed flexible modes primarily due to the symmetry in the configuration of the
structural design. There is a high likelihood of numerical degeneracies due to round-off in
a finite-precision machine. The associated eigenvector matrix tends to be ill-conditionned
and this problem occurs frequently during the design optimization.

4.2 JPL Large Space Structure

Defective degeneracy in low-order systems can be easily identified and the problem possibly
remedied through simple changes in the model parameters. For example, transverse Dryden
turbulence filters contain a pair of degenerate real roots; these filter poles can be perturbed
slightly to produce a non-defective system with virtually no loss of accuracy in the calcu-
lation of power spectral densities. Most linear time-invariant controller state matrices can
be represented in a canonical form with 2x2 blocks along its diagonal of the form

[ o _21@) ] . (4.1)

Clearly a choice of ¢ =1 would lead to a degenerate subblock.

In control problems for large flexible mechanical systems such as space structures, causes
of eigenvalue degeneracies are usually more subtle in nature than the simple case presented
in Section 3.9 for a two-mass-spring system. The JPL large space structure has been
carefully designed to simulate a lightweight, non-rigid and lightly damped structure in a
weightless environment [28]. The structure itself resembles a large antenna with a central
boom-dish apparatus and an extended dish consisted of hoop wires and 12 ribs. There are
two torque actuators (labelled H Al and H A10) on the boom and dish structure to control
the two angular degrees of freedom in pointing maneuvers, and force actuators at four rib
root locations (labelled RA1, RA4, RA7 and RA10) for vibration control. From the point of
view of control design, it is a challenging problem, since the plant has many closely spaced
modes and is of reasonably high order. There are a total of 30 modes in the basic structural
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Figure 4.1: Antenna Structure
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model. The flexible modes are lightly damped with damping ratios ranging from 0.007 to
0.01. The two rigid-body modes have a damping ratio of 0.12. Our design concept is to use
two available angular displacement sensors HS1 and HS10 of the boom-dish apparatus and
the two torquers HA1l and H A10 collocated with these sensors for control synthesis. With

Table 4.1: Open Loop Modes of the Antenna Structure
[ Eigenvalue | Damping | Freq (Hz) |

-0.09500 £ 0.7860: 0.120 0.12600
-0.08575 <+ 0.7093: 0.120 0.13704
-0.02802 £ 4.0024: 0.007 0.63701
-0.02929 + 4.1844: 0.007 0.66598
-0.07405 £ 10.583:¢ 0.007 1.68434
-0.07405 £ 10.583¢ 0.007 1.68434
-0.11310 £ 10.616: 0.007 2.57123
-0.11785 + 16.3841 0.007 2.67929
-0.21365 £ 30.520¢ 0.007 4.85749
-0.21365 + 30.520¢ 0.007 4.85749

this selection, 20 of the flexible modes associated primarily with the rib motion become
uncontrollable and unobservable. These modes are removed by modal truncation from our
plant synthesis model. Eigenvalues of the remaining 10 modes are shown in Table 4.1.

4.3 Controller Design

An optimal low-order controller is designed to dampen vibration of the antenna in response
to external excitations. To evaluate the effectiveness of the control system, we perform
the following test. The entire structure is agitated using the two boom-dish actuators for
the first 6.4 seconds with an applied torque in the form of a square wave of 0.8 second in
width and with an amplitude of 1 N-m. The control system is then activated right after
the excitation has been removed, and responses of the excited structure at the sensors are
examined. The design objective is to damp out the induced vibration as fast as possible
without excessive use of controls. Note that the natural responses of the structure will take
about a few minutes to decay to zero (Figures 4.2 and 4.3).

For practical implementation, the controller design is choosen to be of 6t* order. The
controller structure consists of a pair of tightly coupled second order systems each with

. 0 1 .
dynamics of the form [ —w? 2w a pair of actuator lag states,
[ —50 0 Az Ay Ais Ass | [ Bir B2 |
0 —50 Az Ay Azs Az By By
A = 0 0 0 1 0 0 B = B3y Bso
B 0 0 Az Age 0 0 |7 | Ba Ba
0 0 Asz3 Asq O 1 Bs1 Bso (4.2)
L 0 0 Ass Ass Ass Ass | L Be1 Bs2 |
(50 0 0 0 0 O [0 0
¢ = 0 50 0 0 0 O’ b = 00

51



The two first-order lag states in the controller model serve as roll-off filters, limiting the
control bandwidth to less than 50 rad/sec. In the design optimization, we have a total of
28 design variables: 16 in the controller A matrix and 12 in the B matrix. The objective
function for design optimization consists of a sum of weighted H2-norms of physical response
variables observed at different locations of the structure. It is of the form

j=1

12 2
Jtg) = Lim, 5 {2 QiEa [y2(t1)] + D RyBa [} (t)] } (43)
i=1 j

Note that the expectation operator F,[+] is for a system destabilized by a factor o. Table 4.2
lists the design variables y; and their corresponding penalty weightings Q;. Also given in

Table 4.2: Design Variables: JPL Antenna Structure
Variable Qs Description
RS1 4100 | Rib #1 root velocity
RS4 3950 | Rib #4 root velocity
RS7 3975 | Rib #7 root velocity
RS10 | 4050 | Rib #10 root velocity
HS1 16500 | Hub angular velocity
HS10 | 15600 | Hub angular velocity
RS1 1100 | Rib #1 root displacement
RS54 1050 | Rib #4 root displacement
RS7 1150 | Rib #7 root displacement
RS10 1025 | Rib #10 root displacement
HS1 3900 | Hub angular displacement
HS10 4100 | Hub angular displacement

Variable R; Description
HA1l 41 | Hub torque actuator
HA10 40 | Hub torque actuator

the table are the control design weightings R; for the actuators H Al and H A10. Responses
in the above objective function are evaluated to random disturbances of unit white-noise
spectra applied simultaneously at all the hub and rib actuators. One may notice that the
values of related weighting terms are perturbed about a nominal. With this nominal value
as the weighting factor, the perturbation was for avoiding degenerate modes in the optimum
design.

The design optimization begins with the following arbitrary initial guess on the controller
matrices A and B,

50 0 1 0 0 O 0.1 0

0 -50 0 0 1 0 0 0.1

0O 0 0 1 0 0 0 0

A= 0o 0 -2 -1 0o olfl'B=| o 1
O 0 0 0 0 1 0 0

| 0 0 0 0 -4 -4 | 1 0]

A destabilization factor o of 0.071 was used to ensure that all the closed-loop eigenvalues
have a real part less than —0.071. The optimization fails to converge when a destabilization
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factor of greater than 0.075 was selected. This difficulty seems to be in moving the modes
at 1.68Hz under this controller configuration, implying that additional degrees of freedom
must be added to the controller structure given in equation (4.2), in order to improve the
performance further.

While the optimization convergence itself took 13.5 hours on a VAX/VMS Workstation
DEC-3500, the proposed algorithm for the calculation of the objective function and its
gradients with respect to the design parameters is robust and leads to well-behaved design
convergence. The final optimal values of the A and B matrices are

[ —50 0 2.874 -—-2270 1.7322 x 1073 —2.2131 x 1074
0 —-50 1.225 0.7825 6.551 —1.037
A= 0 0 0 1 0 0
0 0 —15.73 —0.8799 0 0
0 0 1560 0.2256 0 1
| 0 0 2400 —1.269 —13.62 —0.9810 |

i 5.343 —1.2310 x 1074 ]
6.2118 x 10~4 4.783
2.701 —8.1595 x 104

B= 2221 93152 x 104 (4.9)
—0.5147 5.379
1.614 —1.252

Closed-loop responses of the sensor and control variables corresponding to this design are

Table 4.3: Boom-Dish-Controller Closed Loop Modes

Eigenvalue Damping | Freq (Hz)
-0.086899 £ 0.6588i | 0.1308 0.1058
-0.089071 + 0.7410i [ 0.1193 0.1188

-0.3165 £ 3.624i 0.0870 0.5790
-0.2528 £ 3.790i 0.0666 0.6045
-0.2162 £+ 4.112i 0.0525 0.6553
-0.2056 £ 4.185i 0.0491 0.6669
-0.074193 £ 10.58i 0.0070 1.684
-0.074589 + 10.58i 0.0070 1.684
-0.1168 £ 16.15i 0.0072 2.570
-0.1253 + 16.83i 0.0074 2.678
-0.2142 £+ 30.52i 0.0070 4.857
-0.2143 £+ 30.52i 0.0070 4.857
-49.99 1.000 7.956
-49.99 1.000 7.956

shown in Figures 4.2 and 4.3. The controlled responses decay to zero in about 20 sec after
the excitation has been removed. Notice that the control torques are within the desired
limits of 1 N-m; the results are obtained through the control design weights R; in Table 4.2.
This design example demonstrates the usefulness of a design algorithm for robust low-order
controllers using parameter optimization, and the accompanying improvement of solution
reliability using the algorithms described in Sections 3.6 and 3.7 for degenerate systems.
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Chapter 5

Closed-Loop Transfer Recovery

5.1 Introduction

Multivariable control has evolved over the last decade. Methods for synthesizing control-
laws using optimal control from linear quadratic regulator to linear quadratic gaussian de-
signs have been studied extensively. Robustness issues of LQG have led to the development
of the concept of loop transfer recovery [1]. Recent work by Saberi et. al has fundamen-
tally examined the loop transfer recovery based on a system theoretic approach [11]. In
this chapter, we review briefly the concept of closed-loop transfer recovery which is an ex-
tension of the loop transfer recovery method for the recovery of closed-loop input/output
behaviour. Observer-based controller designs for CLTR will be presented to illustrate the
design concept. A new alternate approach based on numerical optimization is developed
to solve CLTR designs for low-order compensators. This approach is then applied to the
synthesis of a high-bandwidth control system for a rotorcraft in Chapter 7.

5.2 Analysis of Closed-Loop Transfer Recovery .

For performance and robustness, multivariable control synthesis usually begins with the
design of a state-feedback controller. A state-feedback design based on LQR techniques
involves only the solution of Riccati equations and provides a convenient and efficient way to
examine the control problems in terms of achievable performance and robustness. However,
state-feedback design is not practical due to its requirement of noise-free measurement of
all the states, but such a design can provide a target response for output-feedback designs
using loop transfer recovery (LTR). Recovery of closed-loop transfer functions achieved
under state feedback is classified under the category of closed-loop transfer recovery. This
concept has been developed in [11]-[12] using full and reduced-order Luenberger observers.
Designs can be solved using Riccati equations. This approach is later extended to arbitrary
low-order compensators using numerical optimization.
The premise of CLTR is simple. Consider a linear time-invariant plant

#(t) = Fz(t) + Tw() + Gu(t) (Dynamics)
2(t) = Hex(t) + Dow(t) + Du(t) (Criteria)
y(t) = Hsz(t) + Dsww(t) + Dsuu(t) (Sensors)

where w(t) represents the command/disturbance input vector and u(t) is the control input
vector. We assume that a state-feedback design u = Kz has been obtained that achieves
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the desired closed-loop properties in the transfer function T, (s) between the input w(t)
and the output z(t). Many different design methods can be used, e.g. H2-optimal control
[15], H*-optimization [4], and others [33]. A state-feedback design is totally characterized
by the gain matrix K and delineates the achievable performance. The actual performance is
often limited due to a restricted set of measurements and the associated sensor noises. The
problem reduces to finding output-feedback controllers to recover as much as possible the
performance achieved under state feedback. The solution can be found using the concept
of closed-loop transfer recovery with the recovery error defined by

E(s) = Tou(s) — Truw(s) = Teu(s) M(s) (5.1)

where T,.,(s) and T%,(s) are the closed-loop transfer functions between the disturbance
input w(t) and the criterion output 2(t) of a state-feedback and observer-based output-
feedback designs respectively. The transfer function T}, (s) is simply the closed-loop transfer
function between the control input u(t) and the criterion output 2(¢) under state feedback
(independent of the output—feedback design). The transfer function M(s) takes on different
forms depending on whether a full or a reduced-order Luenberger observer has been used
[11]. The structure of the auxiliary transfer function M(s) is defined explicitly in Sections 5.5
and 5.6. The CLTR procedure for observer-based controllers addresses the minimization
of the norm of ||M(s)|| whose solutions can be found from Riccati-based methods in either
H?- or H®-based optimization. However, minimization of the norm of the actual error
function ||E(s)|| can only be done using numerical optimization schemes to be discussed in
Section 6.2.

5.3 The Special Coordinate Basis

Analysis of closed-loop transfer recovery can be effectively performed when the system model
is transformed into a Special Coordinate Basis (SCB) [10]. Under the SCB transformation,
many system properties can be identified: right and left invertibility, system invariant zeros,
infinite zero order structure and the related geometric subspaces.

Appendix C presents an alternative approach underlying the conceptual development of
the SCB transformation following similar notation as given in [10]. Other useful applications
of the SCB properties are found in H? and H® optimization [33].

Let’s consider for simplicity a strictly proper system. The basic notion of the S.C.B. is
to divide up the system states into internal states and output states. The output states are
either themselves outputs or are inputs to a cascade of integrators leading to the outputs.
The state at the top of each cascade will either have one control term entering into its
state equation, or it will not have any control input at all. Thus each cascade of output
states will belong to one of two classes. The internal states are the remaining system states
that do not fall into this category. The internal states can be collectively thought of as
providing feedback to the system from the outputs (Figure 5.1). The class of internal states
is subdivided into those states that are controllable with those control inputs not present
in the dynamics of the output states, and those states which are not controllable with these
inputs. This partition is slightly analogous to that of the output states. Note that if an
“internal” state has an input term that directly affects an output state, then this input can
simply be replaced by the corresponding output state and hence leaving this internal state
with no direct input term. In summary,
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Invariant zeros are the eigenvalues of the partition of the SCB transformed system matrix
corresponding to the states z,. Left and right invertibility are easily visualized in the SCB
transformed space and are not to be confused with controllability and observability. Left
invertibility can be defined as follows: for a given set of outputs, there exists a unique
set of inputs that generates these outputs. A system is left invertible if the states z. are
non-existent. Similarly, it is right invertible if the states g, are non-existent.

The condition of left invertibility is not the same as that of observability. All the output
states yy and y, are observable, so a lack of observability may only exist in the internal
states £, and z.. By the same token, some of the output states y, and/or some of the
internal states z, may be uncontrollable.

The SCB transformation allows designers to examine the general system input-oulput
properties for a given set of inputs and outputs. It should be noted that the inputs can
be either controls and/or disturbance inputs, and the outputs can be either sensor and/or
criterion outputs.

In the context of closed-loop transfer recovery, conditions for either exact or asymptotic
recovery depend on the system input-output properties between the disturbances w(t) and
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the sensor outputs ys(t) for the state-feedback stabilized system

_ { i(t) (F — GK)z(t) + Gu(t) + Tw(t) (5:2)
VWY ys(t) = Hsz(t) + Dau(t) + Dapw(t) :
This analysis applies only to recovery designs with a full or reduced-order observer-based
controller. Issues related to controllability are implicitly resolved with the existence of
a suitable state-feedback law. In the next section, we recall some basic conditions for

recoverability obtained in [11] for observer-based controllers.

5.4 Conditions for Exact and Asymptotic Closed-Loop Trans-
fer Recovery

As previously mentioned, we need to examine the SCB properties of the system %,,,, be-
tween the disturbance input w(t) and the sensor output y,(). It has been shown [11] that
recovery is possible if this system Y,,,, is left invertible and has stable invariant zeros. For
the case of full-order observer-based controllers, exact recovery is possible if furthermore
the system X,,,, under the SCB transformation has no y; states; otherwise, one can only
achieve asymptotic recovery. In another word, full-state feedback design is not recoverable if
the system ¥, has z. states (i.e., not left-invertible) or nonminimum phase (i.e., invariant
zeros on the right-half plane).

In the case of reduced-order observer-based controllers (i.e., Luenberger observer), we
have the same recovery conditions as in the case of full-order observer-based controllers.
However, exact recovery is still possible even when there are output states y;. The exact
recovery condition requires simply that each output state in y; is separated from the inputs
u(t) by at most one integrator. If more than one integrator exists between them, then the
recovery can only be achieved asymptotically.

A more complete discussion on recoverability of observer-based controllers can be found
n [11]. For non-recoverable systems, the nonzero values of the auxiliary transfer function
output M(s) are transformed to the actual error

E(s) = Tou(s)M(s)
which could be quite large for a nonzero M(s). For the non-recoverable case, the CLTR
design problem is more appropriately addressed through minimization of the actual recovery

error E(s), which makes the use of numerical optimization necessary to determine the design
solution. This design approach is presented in Chapter 6.

5.5 CLTR Design with a Full-Order Observer-Based Con-
troller

Consider the recovery error achieved under a full-order observer-based controller [11],
Eg(s) = Tzfuf>(3) — Tow(s) = Tou(s)My(s)

with Ty (s) is the closed-loop transfer function between the control u(s) and the criterion
output 2(s) under the state-feedback design. Similarly, T%.,(s) is the closed-loop transfer
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between the disturbances w(s) and the criterion output z(s). The transfer function T.5/> (s)
corresponds to the closed-loop system with a full-order observer-based controller.
Consider the following plant and full-order observer-based controller,

Plant
z(t) = Fz(t) + Tw(t) + Gu(t)
2(t) = Hcz(t) + Dyyw(t) + Dau(t)
ys(t) = Hsz(t) + Deyw(t) + Dgu(t)
Full-Order Observer-Based Controller
(t) = (F— K%H)z(t)+ Gu(t) + Ky,(t)

wlt) = —Ki(t)

where K is the state-feedback gain matrix and K° is the observer gain matrix to be
determined under the CLTR procedure. The auxiliary error My(s) can be described directly
in terms of the following state model

Ms(s) = K(sI-F+K®H) (T — K% D,,)
MF(s) = (O — DL K" )(s1 — FT + HT K" )1 KT

The system transfer function M?(s) can be described by the following auxiliary system

z(t) = FTa(t)+ Hlua(t) + KTw(t)
zZ(t) = TTz(t) + DL u(t)

under the state-feedback control 4(t) = —K "bsT:z'(t). Synthesis of the observer gain K obsT

can be performed through the minimization of the H2-norm of the criterion output z(t) as

in an LQR state—feedback problem. Namely,

A PN e _ rr?  rDf z(t)
T _ T T sw
II?OIIE/O zZ' (1)z(t) dt—?ag}/‘o [:c t) u (t)] [ DouIT Dy DL, ] [ﬂ(t) dt
This problem is a singular H?-optimal control due to the fact that the weighting matrix
Dy, DY is usually singular. One can solve this problem by introducing a small perturbation
into the singular portion of this matrix. To do this, we first perform a singular value
decomposition on Ds,, as follows,

Dy = UpZpVE = Dg, DL, = UpEpETUE

where
(6?2 0 O )
0 o2 0
T _
XpXp = | o2 0
0 0
L0 |

Singularity of a matrix is usually defined relative to its maximum singular value as in the
definition of the condition number. Let’s choose a small perturbation equal to eo? with € in
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the vicinity of the machine precision. If this number is greater than o2, for some m, then
one would perturb the matrix D, D, by

. O m-1yx(m-1y 0O
R = [DstZw]perturkd = Dst.Zw + EU%UD |: ( 8)(( v [I] Ug

This problem can be solved as a regular LQR problem and solution obtained from an
algebraic Riccati equation

0=5(FT = HTR'DouL'T) + (F = TDL,R"'H,) S + T (I - Dy R~ D, TT) IT
~SHTR'-'H,S

with K% = R'-1 (HSS + DWFT). Let’s define E(s,€) = T3> (s, €) — Thw(s) associated
with the family of closed—loop transfer functions T.5f>(s,€). One can examine the asymp-
totic properties as € — 0. If the conditions for exact recovery are satisfied, then for ¢ — 0,
the gain matrix K obs™ will converge to a finite gain matrix as E(s,¢) — 0. Otherwise, some
of the gains in K2 will approach infinity. Closed-loop responses of the state-feedback
design associated with infinite zeros of the system %,,,, will not be recovered asymptoti-
cally while those corresponding to the finite stable invariant zeros will be exactly recovered.
In the case of asymptotic recovery, although E(s,e) — 0 as ¢ — 0, one must pick an ¢
representing a desired level of recovery along with a reasonable finite gain for K.

5.6 CLTR with a Luenberger Observer

In the Luenberger observer design, some of the measurement outputs are assumed to be
noise free. For a given state-feedback matrix K, a controller based on the Luenberger
observer is of the form,

0(t) = Lo(t) + Miys(t) + Mau(t)
Z(t) = Pou(t) + Jys(t)
u(t) = —Ki(t)
with
QF - LQ = MH;, M;=QG,
and

JH, + PQ = I,

Note that n is the order of the plant model.
Without loss of generality, we can always transform the plant model such that the
noise-free outputs of ys(t) become a subset of the system states (see [11], Section 4.2).

(&) _ [ R F )] [6 r
00 | = | P Fa } [x;(t) ] | 6 ]“‘“* [ Iy ]w(t)
2(t) = Hz(t) + Deyw(t) + Dayu(t)
Jw®] [ o Hoel[z@] [ Duw
ys(t) = i y?(t) ] - i Iy_mg 002 :l [fL';(t) | + [ 0 0 ]w(t)
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Clearly, an observer is needed to estimate the states z2(f). Defining an observer gain matrix
Kobs = [K,.O ) Kﬁ{’s] whose partitions correspond to the measurement outputs yo(t) and

y1(t) respectively, we obtain a controller with a reduced-order Luenberger observer of the
form [12],

0(t) = Aorv(t) + (Go — KACr) u(t) + K:B*30(t)
+(F21 K2 Fi1 + Ao K2 ) y1(t)

i) = [ ° ]v(t)+[ ;;;;:"]yl(t)

Iﬂ—p+mo
u(t) = —Kz(t)

where
0b ob
Aor = Fap — K3 Hs 02 — K2 F12

We also partition the state feedback gain matrix K = [K, K2] in accordance with the state
partitions z;(t) and z2(t). The recovery error can then be written as in [11],

E.(s) = T5” (8) — Tew(s) = Tou(s) M, (s)

where T3~ (s) is a closed-loop transfer function incorporating a reduced-order observer—
based controller, and

M(s) = Ky (sI - Ar + K2°C,) " (B, — KD,

or
T T\ —1
ME() = (87 - DEKE) (o1 AT+ Ok o

where
Ar =Fp , By =Ty,

_ | Hsp2 _ | Dswo
As in the case of full-order observer-based controller, an auxiliary system can be constructed
such that its closed-loop transfer function under a “state-feedback” law is equal to M, (s).

It is given by
z-(t)
z(t)

and a(t) = —K2*z.(t).

The reduced-order observer design gain matrix K2 can be obtained from the mini-
mization of the H?-norm of the criterion output z(t). If the associated LQR problem is
singular, one can perturb the weighting matrix D, DT in a design approach similar to the
that presented in Section 5.5. As in the full-order observer case, closed-loop responses
corresponding to finite stable invariant zeros will be exactly recovered. Furthermore, re-
sponses associated with first-order infinite zeros will also be exactly recovered. Responses
corresponding to infinite zeros of second and higher order will be asymptotically recovered.

ATz, (t) + CTa(t) + KTw(t)
BTz.(t) + DTa(t)
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5.7 Conclusions

In this chapter we introduced the concept of closed-loop transfer recovery. Analysis of
recoverability using observer-based controllers can be done using system properties derived
from the SCB transformation. A procedure based on Riccati solutions is given for the design
of full and reduced-order observer gain matrices.
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Chapter 6

CLTR Using Numerical

Optimization

6.1 Introduction

Although numerical optimization provides a powerful design tool for the synthesis of multi-
variable control systems, its usage is still limited. Difficulties often encountered in optimal
control synthesis are related to how one formulates the design problem to account for all
the basic requirements in stability, performance and robustness. Even in H2/H®-optimal
control, extensive design trade-offs are often needed before a satisfactory optimum design
can be found. Some of the trade-offs reside in the selection of a quadratic performance in-
dex. Here, one needs to identify, through successive trials, the appropriate design criterion
variables, the control variables, and their relative effects on the overall design. The process
tends to be computationally intensive and time consuming if one considers direct synthesis
of low-order controllers using numerical optimization. However, if the control problem can
first be solved under the setting of state feedback whose solutions can easily be obtained
from the algebraic Riccati equation, one can then proceed to the design of output-feedback
controllers using the concept of closed-loop transfer recovery. The merits of this approach
are that few design iterations are needed in obtaining an output-feedback controller, espe-
cially when a low-order controller is derived from the order reduction of an observer-based
controller that achieves exact recovery.

In this chapter, we address the problem of closed-loop transfer recovery using an ar-
bitrary controller structure. As indicated in the previous chapter, analysis and design of
closed-loop transfer recovery are well developed in the setting of observer-based controllers
[11]-[12]. These results form the baseline designs to CLTR using numerical optimization.
Performance and robustness achieved under observer-based controllers serve as guidelines
in defining a satisfactory output-feedback design of lower order. A tentative low—order con-
troller design can be obtained from order reduction of an observer-based controller using a
balanced truncation method. Hankel singular values of the observer-based controller model
can be used to determine the possible order of the dynamic compensator in numerical op-
timization. The advantage of numerical optimization is that it allows designers to seek
controllers of a specific (practical) order and structure in the recovery of the closed-loop
characteristics achieved under state feedback. The numerical scheme can further be used to
re-optimize the recovery error over a given control/command bandwidth using frequency-
shaped filters.
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6.2 Problem Formulation

In this section, we define the problem associated with closed-loop recovery using an arbitrary
dynamic compensator. Under this setting, there is no longer the simple relation for the
recovery error as defined in equation 5.1.

For a dynamic compensator of the form

- { e(t) = Acte(t) + Beys(t)
Tl ut) = Coxclt) + Deys(t)

analytical results for closed-loop transfer recovery analysis and design are not possible
in general. Closed-loop transfer recovery problems presented in [11] and [12] apply only
to observer-based controllers. Given a recoverable system for an observer-based design,
a controller with the general structure shown above is also likely to recover the desired
state—feedback properties.

With H? optimal control, H® optimization, pole placement, or other design techniques,
one can determine a set of state—feedback gains K that meet desired closed-loop character-
istics through the control u(t) = —Kz(t). The resulting closed-loop system

il

. { 24(t) (F — GK)z4(t) + Tw(t)
2w 2(t) = (Hc— DauK)zs(t) + Dayw(t)

defines the ideal transfer function 73, (s) to be recovered with an output-feedback design.

In the design approach based on direct optimization for CLTR, the quantity being
minimized is the actual error

E(s) = Tzu(s) — T;u(s)

rather than the auxiliary transfer function My(s) (equation 5.1). Typically the disturbance
input w(t) is modelled as white noise. Frequency shaping can be introduced into w(t) using
additional filter dynamics

oo { "tw(t) = Fw$w(t) +Fw77(t)
v w(t) mew(t) + Dwn(t)

where n(t) are white noises. The overall synthesis model, including the noise shaping
filters, the state—feedback target system dynamics, the open—loop plant, and the controller
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dynamics is given by

([ 2w(?) F, 0 0 0] zu(®) Ty
1 (t) TH, F-GK 0 0 || z(t) D,
a;f(t) =lra. o Foll|law |*]|rD |
Ee(t) 0 0 0 0] | () 0
0 0
0 0 U
+ G 0 [uc]
0 I
o ul)
‘ e(t) = [0 (Ho—DaK) —H. 0] xmf(%) | Dau 0][;‘;((%]
z(t)
Ty ()
ve(t) = {Ds"()H‘” 8 }és g } ”;f((tt)) +[D ’“(’)D’” Jn(t)
zc(t)
Dy 0] u(t)
| ][]

where e(t) is the recovery error, and y.(t) is the measurement output vector augmented
with the states of a dynamic output—feedback compensator of order r. Feedback control is
conveniently implemented in a static output feedback form

[ ;‘c((?) ] = Coe(t) = [ i Jyea).

The CLTR problem for a dynamic output—feedback compensator reduces to finding a gain
matrix C, that minimizes a certain norm of the recovery error, or

r%in Jcltr(coa tf) .

For the H? norm of the recovery error, the disturbance inputs are treated as white noises
with E[n(¢)n(r)T] = Woé(t — 7). The corresponding H? cost is given by

Jawr = Jim B [€"(t7)e(t)] -

By Parseval’s theorem, it has the equivalent form

1 o0
Jar=— [
T Jo

in the frequency domain. It can be extended to include a frequency weighting W (jw) as
follows

2

(T () — T2 (ju)] We | dw

Jotr = = [ MTeu0) = T2, G} W (G o

Due to the difficulty in finding an analytic solution for a general controller structure, a
minimum Jir is often obtained by nonlinear optimization techniques.
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Difficulties in numerical optimization for the CLTR approach are associated with the
following two factors. The first is that poles of the closed-loop system in the output—
feedback design are optimized toward those of the “reference” state-feedback system. While
the eigenvalues are coming closer together, the modes themselves remain distinct because the
dynamics of the state—feedback and the output-feedback systems contained in the synthesis
model remain distinct. The typically large size of the overall system matrix brings in the
second factor. Roundoff in computations involving large system matrices could cause non-
degenerate modes with the same eigenvalue to appear degenerate. With degenerate modes,
or correspondingly, defective eigenvalues in the system matrix, algorithms for computing
the cost function and its gradient based on an eigenvalue—eigenvector decomposition will
break down. Since a degenerate system matrix is likely in the CLTR procedure for most
practical problems, one must employ techniques for computing the cost and its gradient
that are immune to this condition.

6.3 Feedforward Controller in the CLTR Design Procedure

We present a design approach for feedforward gains in numerical CLTR. Determination of
the feedforward gains in the optimization process would certainly provide the best responses.
However, because the feedforward gains do not affect stability, one need not include them in
the controller optimization process, thus reducing the number of parameters involved and
saving computation time.

A particular feedforward structure is chosen here for convenience. Given a feedback
controller design, the basic idea is to construct a feedforward gain to achieve the desired
steady—state relations between command inputs and the commanded outputs. Although
we limit the scope to constant gain matrices, the resulting solutions are often non—unique.
First and foremost, we review the computation of feedforward gains for the state feedback
case. In the subsequent sections, we consider observer-based controllers followed by the
case for a general controller structure.

6.3.1 A Feedforward Controller under State—Feedback

This is the simplest case of feedforward controller design. We write the system dynarmcs
and commanded output in a single set of equations

sy 1_[ (F-cK) e 2(t) 61
Yema(t) (Comd — DemaK) Domd | | Uema(t) '

Here ucma(t) is the direct control input derived only from the command feedforward gains
acting upon Yres(t). A feedforward controller is then determined such that the system
outputs Yema(t) match the command reference inputs y..r(t) in steady-state, i.e., when
Z(t) = 0. Solving equation (6.1) for steady—state values of the states and the control inputs,

we have
oo (F — GK) ¢ 17 o ©2)
Uernd (Cemd — DemdK)  Dema Yref '

=)
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Figure 6.1: State Feedback System with a Feedforward Gain

where 2, is the steady-state value of z, and

L] [ (F-ck) ¢ 17'To
N | (Ccmd - Dcm.dK) Dema I
From this, we can deduce that uemq(t) = Nyres(t) and therefore Kz = N. Very often the

matrix
(F - GK) G

is not full rank, therefore we must take the pseudoinverse rather than the actual inverse.
This signals the existence of more than one solution to the feedforward gains (we have more
degrees of freedom than necessary). This feature comes in use when we pick convenient
solutions to some of the cases that follow.

Considerable simplification can happen when one considers command inputs to integral
states. There are two similar, but distinct cases involving integral states recognized here.
In the first case, the integral states are part of the plant model

zt) | | F O z(t) G
la‘c’(t) ] = [ FI o] [:El(t) 1o [ U
Assume there is no direct control input into either the integral states or the commanded

output Yemq (G! = 0 and Dgng = 0). Partitioning the state feedback gain matrix into
[K KT}, the overall system would look like

2(t) F-GK -GK!' G z(t)
() | = F! 0 0 c'(t) |. (6.3)
Yema(t) 0 Coma O Uema (t)

Again, the steady-state solution would correspond to & = 0, &l =0, and Yemd = Yre r. Let’s
consider an alternative solution uemg = K'C; yres or Kgy = K'CZ),. (It is assumed,
without loss of generality, that Ceng is full rank). With this feedforward gain, we have
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Tg =0, and 2l = C;,,lldy,e ¢. Other nontrivial solutions (nonzero ) of equation (6.3) are
possible.

The second case involves plant dynamics that are augmented with the integral states
21 (t) = Yema(t) — Yres(t). The combined equations for the augmented system dynamics and
the commanded output are given by

(1) F-GK -GK' @ z(t)
21(t) + yres(t) | = Comd 0 Domd z!(t) (6.4)
Yemd(t) Cemd 0 Demd Ucmd(t)

In steady-state, we have

(F-GK -GK! G ][ zs 0
Comd 0  Demd zhs | = | Yres
i Ccmd 0 Dcmd 1L Uemd j | yref |
or ) i}
(F-GK -GK!' G ] z;s [ o]
Comd 0 Dema u o8 Yref
- - L C'rn-d ] — -

While this can be solved for K as before for ugng = Kjfyres, it must be noted that the
command path through the integral states will govern the long-term command response.
The structure of the above equations guarantees the existance of more than one nontrivial
solution (zes # 0) for Ky when such a solution exists, allowing a choice of transient
responses to command inputs. Often Ky is set to zero.

6.3.2 A Feedforward Controller with Observer—Based Controllers

Design of the feedforward gain matrices Ky and G. (as shown in Figure 6.2) will differ
slightly between a feedback controller design based on an observer-based controller structure
and one with an arbitrary dynamic compensator structure.

A direct feedforward input into the controller dynamics provides an “anticipation” factor
to the command inputs. An observer-based controller using the CLTR procedure possesses
an inherent feedforward controller structure. This is due primarily to the fact that the
observer has a direct input term from the control u(t). Let’s examine in more detail the
influence of a command input in an observer-based controller design. The observer-based
controller is given by

be(t) = Acto(t) + Beys(t) + Gau(t)
£(t) = Pxc(t)+ Jys(t)

where the control output is

u(t) = KZ(t) + tema(t)
= KPz(t) + KJys(t) + vema(t)
= chc(t) + Dcys(t) + 'ucmd(t)
= Cee(t) + De[Hsz(t) + Dsyts(t)] + tema(t)
Ccmc(t) + DcHs«'L'(t) + (I + Dchu)ucmd(t)'
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Figure 6.2: Closed-Loop System with a Feedback/Feedforward Controller

where we deine C. = KP and D, = KJ. For smplicity, we assume D.Dg, = 0. The
combined closed-loop dynamics and command ouput equations are given by

(1)
x.c(t) =
L ycmd(t)
- (F+GD.H,) GC. G . (6.5)
B(1 + D, D;) Ac+ B:.Dg,C,
‘+‘G2Dc HS +G2Cc Bchu + G2Dcmd u:::ld
L (Ccmd + DcmchHs) Dcmdcc Dcmd
In steady state, we have
[ Zgs
Zcss
L Ucemd
[ (F +GD.H,) GC. G - .
Bc(I + Dsch) Ac+ B D Co
+G2DC Hs +G2CC Bchu + GQDcmd yO
L (Ccmd + DcmchHs) Dcmdcc Dcmd ref
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or

L
M =
| N
[ (F + GDH,) GC. G To
[BC(I + Dsch) + G2Dc]Hs Ac + BchuCc + GZCC Bchu + G2Dcmd 0
L (Ccmd + DcmchHs) Dcdec Dcmd I

We have tcmd(t) = Nyref(t) or Ky = N. Within the context of Figure 6.2, it is straight-
forward to see that G = G2 K.

Like the state-feedback case, some simplification is possible if one considers problems
with integral control

zt) | | F 0 z(t) G
[ (1) } = [ Coma O ] [ @ | 7| o [M
Note that the control is given by u(t) = Cezc(t) + Deys(t) + DIz’ (t). This would result in
a closed-loop system of the form

#(t) G G G z(t)
) ][] 6w e |G [ &1
"tl(t) +yref(t) [Ccmd 0] 0 Dema ml(t)
Yoma(t) [Cema O] 0 Dema Ucmad (1)
where

o F 0
4= | Be(I1+ DeuDc)Hy Ac+ B.DonCo

As in equation (6.4) for the state feedback case, the above form allows more than one
solution to the command feedforward ucmg = Kfryres, With Ky = 0 often being used. As
before, only the short—term response is governed by this feedforward.

6.3.3 A Feedforward Controller with Non—Observer—Based Controllers

We can now proceed to the design of the feedforward controller for an arbitrary feedback
compensator of the form,

2(t) = Aczc(t) + Boys(t)

u(t) = Cexc(t) + Deys(t)

The overall closed-loop structure is exactly as shown in Figure 6.2. Because there is no pre-
set distribution from the control usnq to the controller, determination of the feedforward
gains Ky and G will have more degrees of freedom due to the nominal independence of
the two matrices.

We will cover three common approaches for designing the feedforward gain matrices K s¢
and G,. In the most general case, one simultaneously creates both matrices. We first write
state and output equations for the overall closed-loop system

(1) (F + GD.H,) ac. ¢ 0 ”"((tt))
¢e(t) | =| Be(l+DsuD)Hs (Ac+ BcDsuC:) B.Dsu 1 e
Yo (£) (Comd + DomaDoHs)  DemaCo Dong 0 ::j t;
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where Uema(t) = Gcyres(t) and we again assume D.D,, = 0. The above system is not
square, with more degrees of freedom than equations. Thus, one can solve the above using
a singular value decomposition on the system matrix

(F + GD Hy) GC, G 0
UrSpVE = | Bo(1+ DaD)H, (Ac+ B:DeuCs) BeDgy 1
(Ccmd + DcmchHs) DnaCe Deng O

by constructing a pseudoinverse. The form of the pseudoinverse is VF)J}U}’;, where E} is
generated by transposing the singular value matrix ¥ r and replacing each nonzero singular
value with its reciprocal. Applying this to the steady-state response,

Tsg L

Tess t T 0 M
Uernd = VF‘ b FUF (I) Yref = Kﬁ Yref-
vcynd GC

The other two methods depend on pre-selecting either of the matrices Ky or G¢. In
direct optimization of a controller, one often has the commanded outputs coinciding with
several of the sensed outputs, in which case it would be reasonable to make —G. equal to
selected columns from B.. The overall system becomes

(1) (F +GD.H,) GC, c z(t)
Ze(t) — chref(t) = B.(I+ DguDc)H, (Ac + BchuCc) BDg, z(t)
ycmd(t) (Ccmd + DcmchHs) Dcdec Dcmd ucmd(t)
or ’
L (F + GD.Hy) GC. ¢ 17'] o
M = B.(I1+ DgD:)H, (Ac+ B:DsuCc) BcDgy -Ge
Kff (Ccmd + DcmchHs) Dcdec Dcmd I

The pre—selection of K s happens in the context of CLTR. Since one is trying to recover
state-feedback characteristics, the steady-state controller response should be like that from
the state-feedback gains. Therefore it is appropriate to use the Ks from state-feedback,
with the remaining feedforward gain matrix G, derived from the system

Z(t) — Kgryres(t) (F + GD.Hy) GC. G z(t)
(1) = | Bc{(I1+ DgD:)Hs (Ac+ BCDWCC) B:Dg, zc(t)
ycmd(t) (Ccmd + DcHs) D rdCe Dema Uand(t)

or, in solving this (usually) nonsquare system for the steady-state response,

(F + GD:Hy) GC. G
UF'EFVFT = BC(I + Dsch)Hs (Ac + BchuCc) Bchu
(Ccmd + DcmchHs) Dcmdcc Dcmd
M| = veshUE] o0
G. I

with )3} as previously defined.
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6.4 Concluding Remarks

In output feedback design, consideration of closed-loop stability and disturbance rejection
is done through careful definition of the input model. Under closed-loop transfer recovery,
these design issues are first addressed under the setting of state feedback design. Many
tradeoffs can be explored quickly using a state-feedback design, expecially when compared
to the long turnaround associated with the direct optimization of an output—feedback con-
troller.

Direct optimization of an output—feedback controller may not include determination of
command feedforward gains. Several useful approaches are given to compute feedforward
gains for an output—feedback controller optimized using the CLTR approach.
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Chapter 7

Control Design for a
High—Performance Rotorcraft via

CLTR

7.1 Introduction

High-performance rotorcraft controller design is characterized by having to compensate
for both the longitudinal and lateral dynamics in a single controller. Rather than having
these modes largely decoupled in the natural state, one often needs to incorporate mode
decoupling as a part of the controller design, especially when the system model includes
high-frequency dynamics from the rotor flap and lag states. In addition to the usual design
considerations of stability augmentation, a high-performance rotorcraft such as the UH-60
would also require good bandwidth and decoupling in the heave, yaw rate, pitch, and roll
command responses.

The initial design step in CLTR is to formulate and synthesize a state-feedback controller
that addresses all the design specifications. The synthesis consists of selecting appropriate
design weights in the usual LQ performance index. For the UH-60 rotorcraft we construct
an integral control, and incorporate a desired set of command input models. With integral
control on all four important quantities—pitch, roll, yaw rate, and heave rate, we achieve
the desired attitude and rate control of the respective output command variables as specified
in ADS-33C for a rotorcraft.

A series of output-feedback designs are then developed from this state-feedback de-
sign using the procedure of Closed-Loop Transfer Recovery (CLTR). Initially, a Luenberger
observer-based controller is designed by minimizing the difference between its closed loop
response and the target closed-loop transfer function achieved with the state-feedback con-
troller. The design minimization problem can be solved analytically through the solution of
an algebraic Riccati equation. Note that in the recovery design process, we no longer need
to iterate on the design performance index. With varying degrees of success in maintain-
ing satisfactory closed-loop performance and robustness, other output-feedback designs are
then derived from this controller using model reduction techniques. A numerical procedure
is also used to design a CLTR controller following the problem description in Section 7.11.
The controller is synthesized using one of these reduced-order designs as a starting point.

On the other hand, one can also synthesize a reduced-order controller directly using the
technique described in Chapter 2. Conveniently, one of the reduced-order designs devel-
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oped from the Luenberger observer-based controller can be used as a starting point in the
direct optimization. The resulting optimized design will be compared to the CLTR-based
controllers.

Design performance and robustness are evaluated based on the specifications defined in
ADS-33C for a rotorcraft.

7.2 The UH-60 Model

The UH-60 rotorcraft model considered in this study is derived from a nonlinear simulation
model linearized about two flight conditions: hover (nominal with 1-knot forward velocity)
and a 15-knot forward velocity condition. In both cases the gross weight is set at 16,800 lbs,
the rotor speed at 27 rad/s, and the air density at 0.002030 slug/cubic foot. The linearized
open-loop model is of 31% order. A listing of the rotorcraft states is given in Table 7.1.

Table 7.1: UH-60 Rotorcraft States

p, ¢, v | Body-axis attitude rates (deg/s)
u, v, w | Body-axis velocities (ft/s)
0z, 0y, 0, | Euler angles (deg) from terrestrial to
rotorcraft axes (pitch, roll, yaw)
z,y, z | Inertial positions (ft)
Bo, Bp, | Rotor flapping rates (deg/s)
IBIS; BIC
Co, ¢p; | Rotor lead-lag rates (deg/s)
Gs, Gic
Bo, Bp, | Rotor flapping angles (deg)
,6151 ﬁlCa ]
(o, ¢(p, | Rotor lead-lag angles (deg)
Gis, Gi1cy B
Ao, A15, | Inflow velocities (1/sec) normalized
e by the rotor radius (26.83ft)

The open-loop linear models in both the hover and 15-knot forward flight conditions
are mildly unstable. The unstable poles represent a phugoid-like response in the front/side
velocity coupled with the pitch and roll responses. In addition, there are modes that are at
or near the origin corresponding either to a pure integration (for instance, the yaw variable
derived from yaw rate) and to a lightly damped motion in the roll axis. Sensor outputs of
the model consist of the body angular rates p, g, and r, the body velocities u, v, and w, the
attitude angles roll ¢, pitch 6, and yaw 9, and the inertial positions z, y, and 2

In both flight conditions, the linear models have a pair of defective degenerate eigenvalues
at the origin. In forward flight, the yaw angle couples into the lateral y;; displacement by
way of forward velocity with #;4:(t) = Vo0(2) included as part of the system model equations.
(This is also true in the hover flight condition where there is a small, but not insignificant
forward velocity). These degeneracies within the system matrix and the tendency to produce
overlapping modes within the CLTR design procedure are major concerns in the numerical
solution of the design optimization. These concerns are addressed directly with the robust
algorithm presented in Section 3.3.
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The four control actuator inputs are &g, s, éc, and érr denoting the collective (main
rotor), the main rotor sine, the main rotor cosine, and the tail rotor pitch inputs respectively.
Using these controls, one should be able to achieve a decoupled set of ideal command
responses in heave, roll, pitch, and yaw rate.

7.3 Actuator and Sensor Delays

Only the actuator delays and the sensor delays for the command variables 8, ¢, r and 2
(Figure 7.2) are present in the state-feedback design. Both the actuator and all the sensor
delays are accounted for in the output-feedback designs. These were set uniformly to 60 ms.
Because of the sensor delays, the system has a set of nonminimum-phase zeros and it is
impossible to recover state-feedback design properties with an output-feedback design.

This delay is modeled as a first-order Pade approximation model. In the Laplace domain,
it is given by

1-Ts
Taetay(8) = 1_{_%
or, in the time domain,
Bt) = —a(t) + Yinlt)

oult) = 72(0) = yn(0)

A higher-order Pade approximation model for the time-delay could have been used; however,
this would lead to a prohibitive number of delay states due to the large number of sensor
outputs (a total of 12) in this design problem.

7.4 ADS-33C Requirements and the Ideal Response Model

Performance of a controller design can be evaluated based on a subset of tests defined in
the document ADS-33C [35]. This subset of requirements is applicable to rotocraft models
linearized about specific flight conditions, and falls into the categories of bandwidth, attitude
quickness, cross coupling, and gust response.

Desired bandwidth properties of the closed-loop command responses are used to define
low-order idealized response models for each of the command variables. The state-feedback
design is derived from the minimization of the error between the actual rotorcraft responses
and the ideal model responses. Such a procedure provides designers a systematic way of
attaining adequate response in the respective channels without imposing excessively high
bandwidth upon the others. Also, similar to CLTR, the need to adjust the criterion weights
to optimize the design is not as severe as it would be with a direct design approach. The
ideal model responses are associated with pitch, roll, yaw rate, and heave commands, and
form the dynamics of the feedforward controller in the final design.

Bandwidth requirements for both the forward and the hover flight conditions are similar,
hence one feedforward command model is used for both conditions—with the exception that
for turn coordination, a command for yaw rate has to be included with any roll command
in forward flight. Otherwise, all commands are completely decoupled in these ideal models.

Based on the ADS-33C bandwidth requirements in Figure 1(3.3) of [35], pitch, roll,
and yaw rate responses are idealized as critically damped second-order responses, while
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heave motion is patterned after a first-order response (refer to Table 4(3.3) in the ADS-33C
document). A first-order approximation to a time delay of 0.1 s is included in each of the 4
channels. As a result, the ideal model has a total of 11 states. The natural frequency of the
pitch response is 3 rad/s, that of the roll response is 5 rad/s, and the yaw rate response has a
bandwidth of 4 rad/s. Damping of the critically damped second-order responses is perturbed
slightly away from 1 to avoid degenerate eigenvalues in these uncontrollable modes. These
modes can cause numerical difficulties in the eigenvector decomposition method of the LQ
synthesis.

According to Figure 2(3.3) of ADS-33C, the command bandwidth is determined from the
frequency response of the transfer function between the command input and the commanded
output where the phase crosses 135 degrees. Targeted command bandwidths are set at
4.33 rad/s for pitch response, 6.08 rad/s for roll response, and 5.27 rad/s for yaw rate
response. Associated with each is a phase delay of 0.06s for pitch, 0.055s for roll, and 0.057s
for yaw rate. While these are all Level I characteristics, the bandwidth is not excessively
high. The heave response is set to a time constant of 3 s and a delay of 0.1s, which correspond
to moderate Level I characteristics. These ideal responses are shown in Figure 7.6.

Simplicity of the control synthesis based on ideal model matching allows designers to
address the bandwidth problem as well as other design considerations. One area of con-
cern is the attitude quickness. It is defined as the ratio between the peak rate and the
angular change in an attitude step command, and is an evaluation criterion quantified in
Figure 4(3.3) of the requirements [35]. These requirements are subject to interpretation
when testing with a linear model. Because the criterion curve for ratio of maximum rate to
attitude change is strongly dependent on the attitude command level, the most stringent
case (at a 5° commanded change) is considered. To satisfy these criteria, ideal models with
a pitch ratio of 1.1, and one with a roll ratio of 1.8 have been selected that correspond to
average Level II responses in the target acquisition and tracking mode. To further improve
these responses, one would have to increase the bandwidth further, and this would place
a too stringent requirement upon any state or output-feedback designs in terms of control
bandwidth. It is further anticipated that these ratios would be accentuated in a more re-
alistic nonlinear simulation test, hence they are kept unchanged at the selected Level II
characteristics.

In the ADS-33C requirements described in items (3.3.9.2) and (3.4.4.2), pitch to roll cross
coupling (and vice versa) is defined as the peak response in one attitude variable due to a step
command in the other. Additional cross coupling tests in forward flight involve measuring
the peak pitch response normalized by vertical acceleration in a step heave command (item
3.4.4.1.1), and the peak sideslip to a 1°-step command in roll (item 3.4.6.2). Additional
hover condition tests examine the peak response and envelope of oscillatory response of yaw
rate from a step command in heave (item 3.3.9.1).

Roll damping in forward flight is tested by measuring the envelope of the oscillatory roll
response due to the roll command (item 3.4.6.1). While neither pitch nor yaw damping are
directly specified, the damping constants for the pitch, roll, and yaw rate responses are all
set to near 1 in the ideal models.

Additional hover condition requirements involve yaw and yaw rate responses to gusts
(item 3.3.7.1). Tests for yaw responses to gusts are somewhat involved. In one test, one
applies a steady 25-knot headwind, followed by a sudden 10-knot side gust. In the other
test, the wind inputs are applied in the reverse order: a steady 25-knot side wind and then
a sudden 10-knot head gust.
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7.5 State Feedback Designs

With the idealized output responses defined in the ideal models, the design procedure for
the state-feedback designs follows somewhat the concept of loop transfer recovery—on the
commanded responses. No reasonable ideal model appears to exist for the gust responses.
By minimizing the difference in the commanded responses, the use of a pole attractor
formulation for desired closed-loop stability is no longer needed. A further advantage is the
anticipation factor introduced in the synthesis through the inclusion of the actuator delay
in the design. A block diagram of the design set-up is given in Figure 7.1.
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Figure 7.1: Synthesis Model for Full-State Design with Integral Controls

From our previous work [34], we recognize early on the need for integral control on
the commanded error quantities. The purpose is to provide steady-state command track-
ing to step changes and incorporate design robustness to constant disturbances. Putting
penalty weights on the integral of the commanded errors ensure that the integral modes
are detectable from the LQ design cost function. The penalty weighting matrices Q and R
differ significantly between designs for the hover condition and forward flight. The control
penalty is evenly divided among the 4 controls with R = I (identity matrix). The criterion
variables consist of Aé (pitch error), A¢ (roll error), Ar (yaw rate error), Az (heave error),
and integral of the errors [A#, [A¢, fAr, and [Az. In the hover condition, a criterion
weight of 400 is used on all the variables with @ = 400I. In forward flight, however, a
trade-off between performance and stability of an oscillatory mode around 18.5 rad/s is
needed. This mode is excited primarily by the roll command. Sideslip control is of course a
problem in forward flight, but an attempt to control it via a penalty on the sideways accel-
eration ¥ is not fruitful. Design effort involved in the selection of the penalty weights for the
forward flight condition is considerably greater than that for the hover condition. The final
weighting factors are given in Table 7.2. Robustness analysis in terms of single-loop gain
and phase margins is also performed for both the control and sensor loops. Performance is
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Table 7.2: Design Weights on the Criterion Variables in the LQ Synthesis

Criterion | Hover | Forward
Variable Flight

A8 400 500
A 400 | 500
JAr 400 80
Az 400 100
Af 400 300
A¢ 400 400
Ar 400 400
Az 400 500

satisfactory based on the ADS-33C requirements. Results are shown in Tables 7.7 to 7.10,
and Figures 7.7, 7.8, 7.9, and 7.10.

Since there is no penalty weighting on ¥, z, y, or z, and that these states are associated
with poles at the origin, they will not be detectable in the LQ synthesis. To avoid numerical
difficulties in the solution of algebraic Riccati equation, these states have been removed
from the state-feedback synthesis model. However, in the output-feedback designs, these
additional sensor outputs would provide improved observability on the integrals of ¥, u,
v, and w. This information is especially helpful in steady-state command following for the
variables r and 2.
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Figure 7.2: Synthesis Model for Full-State Design with Sensor Delays Added

With a state-feedback control structure as shown in Figure 7.1, all the state information
is assumed available, uncorrupted by noises and not subject to sensor delay. However, for
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proper control anticipation, sensor delays are taken into account in those sensor outputs that
are used to form the integral errors. Hence, the state-feedback gains used in the subsequent
CLTR observer-based designs are derived from the system shown in Figure 7.2. Performance
of the resulting closed-loop state-feedback system defines the baseline results for comparison
with subsequent output-feedback designs from loop transfer recovery or direct optimization.
The integrators in the integral control of the command errors are clearly more a part of
the feeback controller than of the plant model, and the state-feedback gains on the integral
states can be retained in the reduced-order observer-based designs.

7.6 Closed-Loop Transfer Recovery

Closed-loop transfer recovery (CLTR) offers a useful framework for the synthesis of output-
feedback controllers starting from a satisfactory state-feedback control laws. Analysis of
closed-loop recoverability using the Special Coordinate Basis (SCB) transformation reveals
that the system between the command/disturbance inputs and the measurement outputs
has 23 internal states, 19 output states, 8 stable invariant zeros (at @33.33 rad/s), and 12
infinite zeros of order 1. Note that the system used in this analysis includes the sensor
delay in the outputs to the integral control. In this SCB analysis, we include independent
disturbance inputs to all the system states, with the exception of the output delay states
(for pitch, roll, yaw rate, and heave), and the command error integral states. Again note
that the states 9, z, ¥, and z are not involved in the LQ synthesis and hence are excluded
from the analysis.

Exact or asymptotic recovery is in general not possible. The existence of invariant zeros
in the right half-plane due to time delay in both the inputs and outputs poses a constraint on
the loop recoverability. However since these invariant zeros are far removed from the origin
and hence will contribute only slightly to the non-recoverable error. The major difficult for
loop recovery lies in the fact that the system is not left-invertible due to the presence of
multiple disturbances entering into the majority of the system states.

It should also be noted that a full-order observer-based design generally achieves less
overall recovery than a reduced-order (Luenberger) observer-based design since the latter
design has the inherent benefit of feedthrough terms from the direct feedback of the mea-
surement outputs.

7.7 Luenberger Design

From early experiences with similar rotorcraft designs, a Luenberger design tends to achieve
better recovery of the closed-loop LQ performance. With direct observation of the integral
states and the feedforward ideal model states, a Luenberger design is also more appropriate
than a full-order observer-based controller. Furthermore, due to the large model size, one
can make use of the sensor outputs to minimize the number of states that need to be included
in the dynamics of the reduced-order observer. This is conveniently done by replacing parts
of the system states with the noise-free measurement outputs.

Design of a Luenberger observer-based controller under the CLTR procedure is described
in Sections 5.5 and 5.6. In terms of an H2-norm minimization of the recovery error matrix,
one usually needs to solve a singular optimal control problem. Generally, a reduction in the
recovery error is accompanied by an increase in the magnitude of the observer gain matrix.
Due to the presence of only infinite zeros of order 1, the recoverable portion can be exactly
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recovered by a reduced-order Luenberger observer-based controller. A simple diagram of
the CLTR design formulation can be seen in Figures 7.3 and 7.4.
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Figure 7.4: Synthesis Model for CLTR with Observer-Based Controllers

The overall results are satisfactory, with some degradation in command bandwidth and
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relatively minor changes in performance (Tables 7.13 and 7.14). Robustness also remains
acceptable (Tables 7.7 to 7.12). Some noticeable differences in the command responses are
seen in Figures 7.7 to 7.10.

The overall controller design consists of a 35'"-order Luenberger observer combined with
an 11t _order feedforward controller, and an integral controller of 4** order. This compares
to the 47th-order rotocraft model, which includes a 31%t-order model for the rotocraft dy-
namics, a 4**-order model for the actuator delay, and a 12t*-order model for the sensor
output delay.

To describe more precisely the controller structure, let’s designate the ideal model (i.e.,
feedforward controller) system as {Aigeat; Bideals Cideal, Dideat}, 8nd the state matrices of
the Luenberger design as

Ajc | Luenberger observer system matrix

By, | Control input distribution matrix

Cic | Output distribution matrix (state to control)
Gy | Sensor to observer input distribution matrix
P,. | Sensor to control distribution matrix

Of particular interest are the Gi. and P matrices. Note that the inputs to the controller
include not only the usual sensor outputs y, from the plant, but the integral states z;
and the feedforward controller states zs; as well. One can then partition the matrix G,

into [Gi,GL,G{;F ] where G}, = GEF = 0. The same partitioning applies to the matrix
P, = [P,ﬁ ,PL, PEF } These matrices show up in the overall controller model as follows,
depending on whether it is described in

e an observer-like form:

JA —Cigea O —Digeas Crs 0
Ac = 0 Aideo,l 0 ) Bc = Bidea.l 0 0

0 0 A 0 G B (7.1)
C. = [PL PE" G, De = [0 Bf 0]

with inputs yYemd, ¥s, and u, or in

e an alternate non-observer form:

f A —Uideal 0 — Lideal CIS
A. = 0 Aideal 0 , B = Bideal 0

BlcP[{; Blcpsz Alc + Blcclc 0 Gisc' + Blcpfz
C. = | PL PEF Ci |, D. = [0 P

(7.2)
with no explicit input from the control u.

Note that the term Cjs distributes the sensor ouputs ¢, 8, r, and 2 to the appropriate
integral states. So far, for the purpose of robustness analysis, the observer-based form has
been used. Proper selection of one form over the other would become important when we
proceed to the reduction of the controller order.
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7.8 Model Reduction on the Feedforward Controller

While the need to reduce the number of states in the 35*-order Luenberger observer design
is evident, one could also reduce the order of the feedforward controller as well. Usually one
tends to perform a reduction of the entire controller at once without regard to the internal
structures of the resulting linear time-invariant controller. However, to apply the method
of balanced truncation, one needs to partition out the integral states of the commanded
errors. Furthermore, the dynamics of the feedforward controller are only coupled in one
direction to the feedback portion of the controller, it will therefore be practical to do this
reduction as a separate process.

Finally, one needs to examine the question as to whether one should reduce the com-
ponents of the compensator in an observer-like form or in the alternate form. Putting the
controller into the latter form will add a dependency to the feedforward controller states,
as seen in the BlcP,f F term within the A. matrix of equation 7.2. This term represents
the distribution into a portion of the controller related to the Luenberger observer design,
in the same place that GEF would have been. Output from this distribution would add
more degrees of freedom to the model reduction. Even though there are more inputs, the
observer-like form is actually simpler and therefore preferred.

Given a controller in observer-like form, the subsystem associated with the feedforward
controller dynamics has inputs w. = {6, by e, 2.}, and produces as outputs the ideal
responses used in the feedforward commands wrpr = {OFF,d)FF,‘K/'JFF,ZFF}, along with
the feedforward control upr. Hence, the resulting feedforward controller used for model
reduction is represented by the following state matrices

Arr = Aideal » Brr = Bidea
Clideal Digeat
Crp = idea , Dpp = i )
[ PLF 0

Remember that the output upp is associated with the distribution matrix PEF. In the
model reduction, we seek the lowest model order that produces the closest input/output
characteristics for the given command inputs. The preferred technique is based on the
balanced truncation method. Looking at the Hankel singular values as listed in Table 7.3,
one could identify that a 7**-order feedforward controller (i.e., a reduction of 4 states)
appears satisfactory. The same conclusion applies to both flight conditions.

One problem with this reduction technique is that the static relation between ycmq and
wrr in the resulting reduced-order feedforward controller is no longer unity. Usually curve
fitting is used to further improve the results of the truncation procedure. In this case, we
can make use of the additional degrees of freedom in the direct feedthrough term which is
not modified in the balanced truncation procedure. The curve fit is done using numerical
optimization. It is found that with white-noise inputs, the integral of the truncation error
must be penalized in order for the steady-state values of the reduced-order model to match
those of the original model. The error was reduced to less than a percent of its original
value, and the resulting feedforward controller matches its full-order counterpart well.

In the feedforward ideal model, only diagonal terms are considered in the command
input distribution matrix. In other words, there is no crossfeed from a pitch command to
the ideal roll response. For the command-to-control portion, a full feedthrough matrix is

allowed. The direct command-to-control submatrix D% is contained in the D, matrix of
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Table 7.3: Hankel Singular Values for Feedforward Controller Model

Hover | 15knot Forward
1: 13.4440 23.1376
2: 13.3388 13.6907
3: 12.7467 11.8742
4 11.2347 6.9295
5: 2.5749 4.0842
6: 1.7669 1.5641
7: 1.5000 0.9651
8: 0.0654 0.1047
9: 0.0478 0.0476
10: | 0.0438 0.0263
11: | 0.0195 0.0202

the controller in observer-like form. Namely,

D.=[ D% PEF o],
In the alternate form we have the same matrix in D, plus an additional nonzero submatrix
By.Dideal within the controller matrix B,

—Dideal Crs
Be=| Bideal 0
Bi.DE Gi + BicPy)

7.9 Balanced Truncation of Luenberger Observer

The observer part of the compensator has not only sensor inputs ys, but also the control
inputs u as well. These control inputs could be eliminated by separately closing the loop
around the compensator, but this has two harmful side effects. Firstly, it makes impossible
to identify and separate out in the compensator portions that correspond to the feedforward
controller, the integral control, and the observer. Secondly, the open-loop compensator may
possess some unstable poles, making the balanced realization impossible. Thus, it is essential
to retain a separate input from the control v in what one would call an observer-like form
of the compensator.

The observer portion of the controller model has the following state model description,

Q.','o = ono + Bo [ys]
u

v =Coxo + Dou
where
Ao =Aic , Bo= {Gi Blc] ) Co=Cl , Do = [Pfg 0}-

Examining the Hankel singular values of such a system (Table 7.6), we see that the model
can possibly be reduced to a 25%*-order controller without noticable change in performance.

Design analysis results confirm the fact that this truncated controller model performs
almost as well as the full-order observer-based controller design. In most areas of robustness,
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command response, and ADS-33C design requirements the reduced order design shows little
difference from the full-order design.

Combined with the reduced-order feedforward controller (7 states) and the integral
controller (4 states), the overall controller is reduced to 36" order.

Closer examination of the Hankel singular values reveals that further reduction in the
order of the observer part of the controller might be possible leading to a 14*-order ob-
server. Analysis of the controller with a 14**-order observer indicates that the design is not
satisfactory, although the resulting closed-loop system remains stable. In the next section,
this reduced-order observer will be redesigned using numerical optimization for improved
performarnce and robustness.

7.10 Reduction of Controller Order using Numerical Opti-
mization

Note that the feedforward controller order has been reduced separately, and the integral
gains are left unchanged, the remaining task in controller order reduction involves only the
observer portion of the controller. As such, only this portion of the controller is formulated
for optimization using the design tool SANDY.

The controller state matrix A, matrix is allowed to have a tridiagonal structure which
was derived from model reduction of the Luenberger observer. All of the elements in the
matrix A. identified by the asterisk are design variables in the optimization.

T+ x 00 00O OOO0OOO0O0 07
* *x *» 00000 0O0O0OCOCTOTPO
0 x x x 00 0O0O0O0O0O0O0TO
00 « x x 00O0O0O0O0O0O0OTO
000 x x = 00O0O0OO0O0O0TO
0 000  x » 00 O0O0O0OO0O
A = 00 00O * »x x 0 0O0O0O00O0
10 000O0O0=* =% xx00000
0 000000 x x 0O0O0O0
0 000O0OO0OUDOT O x=x= 000
000 OO O0O0O0O0OO0 *x * % 00
0 0000 O0OO0O0O0O0 * % x 0
0 000OO0OO0OOODOOU 0 * *x =*
| 0 0 0O0OOO0COOO0O0O0 D0 * * |

Furthermore, elements of the remaining controller state matrices B, C¢, and D. are also
choosen as design parameters.

B _ GlC BlC
¢ (12 sensor inputs) | (4 control inputs)
C; = (4 control outputs) [Clc}
Fic

D. = (4 control outputs) [

(12 sensor inputs) | (4 control inputs) ]

While the 14t -order observer-based controller arrived at by balanced truncation is inad-
equate, it can however be used as a starting point from which one can recover the full-order
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controller responses through numerical optimization. We define the design objective func-
tion in the design algorithm SANDY to be the H2-norm of the error in transfer function
between the original Luenberger observer and the above specified 14**-order design. As in
the optimization of the feedforward controller, it would be desireable to incorporate more
design degrees of freedom into the lower-order observer structure without increasing the
overall controller order. However, because the optimization already involves 368 variables,
introducing additional degrees of freedom will have to be done carefully. One could for
example allow a direct feedthrough term from the control input u to itself, but it is found
to be unnecessary for a well-posed system. One could also have introduced a direct link
from the dynamics of the feedforward controller and the integral control to the observer
dynamics. However, this path has been partially fulfilled by the control input into the
observer and the formulation would be redundant.

In consideration of the alternate formulation to the observer-like form, it is found that
closing the control loop about the compensator is not beneficial. While it could be argued
that eliminating the explicit control input u will reduce the parameter count, a closer
examination indicates that there is no significant advantage.

Simultaneous optimization of parameters in both the feedforward controller and the
Luenberger observer controller is more costly in terms of memory and computational time.
Optimization of just the observer-based controller alone involves 368 parameters. Because
the feedforward controller matches its full-order counterpart well, and because the results
from separate optimization of the observer-based controller are satisfactory, the procedure
involving simultaneous optimization is therefore not needed.

The resulting design optimization improves significantly the controller performance.
While the performance is close to the other output-feedback controllers (i.e., small rela-
tive to the difference between the other output-feedback controllers and the state feedback
controller), its robustness while still adequate is somewhat degraded.

7.11 Numerical CLTR

In general, one can also approach the closed-loop transfer recovery via direct numerical
optimization. It should be emphasized that numerical CLTR is different than the procedure
described in Section 7.10 related to controller order reduction. Here, one can theoretically
start from any preferred size of the controller—the order selected is an arbitrary choice.
The design objective is to determine the controller parameters by matching the closed-
loop responses of the resulting output-feedback controller to those achieved under the state
feedback for a given set of disturbance/command inputs.

In the design optimization, the 25**-order controller (derived from the 14‘*-order ob-
server given in the previous section) provides a convenient starting place in this case due to
its size, and its potential for further improvement.

Initially, the input excitations are bandwidth-limited to 25 rad/s and fed into both the
command and gust input channels. The resulting controller design exhibits poor robustness
in the control paths. Additional noises bandwith-limited to 150 rad/s are then introduced
into the control actuators (the high-bandwidth value is choosen to be above all the system
modes). For the hover case, the intensity of the actuator noises is set at 0.666 compared
to a unit intensity in all other input excitations. However, the intensity is increased to 1.0
for the forward flight case (The results are found to be relatively insensitive to the choosen
value).
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Included in the performance index are the errors in the command responses in roll,
pitch, yaw rate, heave, and their integrals. For robustness, it is necessary to also include
the difference in control responses in the performance index. Several design iterations are

Table 7.4: Objective Weights in Numerical CLTR

Criterion | Hover | Forward
Variable Flight

Roll Residual A¢ | 400 300
Pitch Residual A8 | 400 400
Yaw Rate Residual Ar | 400 400
Heave Residual Az | 800 | 500
JA¢ | 700 500

[AG| 400 | 500

[Ar | 400 80

[Az | 100 100
Collective Residual Aédg 1 1
Main Rotor Sine Residual Ads 1 1
Main Rotor Cosine Residual Aé, 1 1
Tail Rotor Residual Aérgr 1 1

usually needed in the set up and selection of the weightings in this strongly non-recoverable
case. Table 7.4 lists the weightings used—they are similar to, and based on the state-
feedback performance objective. The optimization results show that no further improvement
can be made to the design obtained in Section 7.10.

7.12 Direct Optimization

In this section ,we examine design results obtained from the direct optimization of an
objective function instead of applying the CLTR procedure. Here, the controller is designed
by minimizing the difference between the ideal command responses and the actual responses
along with terms involving control penalty. Initial values of the criterion weights are taken
from the respective @ and R matrices defined in the LQ synthesis. The controller structure
is chosen to be the same as that in the last section to further explore the potential for
optimization beyond the current designs having the same order and structure. The controller
order is found to be reasonably small for design implementation. The numerical CLTR
results of Section 7.10 are used to provide initial design guess in the direct optimization.

As with the numerical CLTR, the system is excited by unit amplitude command and gust
inputs as well as by fictitious actuator noises. The command and gust inputs are modelled
as outputs of first-order filters with a bandwidth of 25 rad/s excited by white noises of
unit intensity. The actuator noises are derived from first-order filters with a bandwidth of
150 rad/s. While the actuator noises are kept at unit amplitude in the forward flight case,
they are adjusted somewhat in the hover case: 0.2 for the collective control, and 0.5666 for
the other control actuators.

In the hover case, considerable improvement can be achieved. The weighting matrices
are initially set to the values defined in the LQ synthesis, and undergo some adjustment
through several design iterations. The final values can be seen in Table 7.5. A slight change
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Figure 7.5: Controller Design Structure in Direct Optimization

Table 7.5: Objective Weights in Direct Optimization

Design | Hover | Forward

Variable Flight

Roll Residual A¢ | 500 300

Pitch Residual A8 | 500 400

Yaw Rate Residual Ar | 400 400
Heave Residual Az | 800 500

JA¢ | 750 500

fA8] 650 | 500
[Ar| 400 | 80

Az | 300 100
Collective Control &g
Main Rotor Sine Control §,
Main Rotor Cosine Control &,
Tail Rotor Control érgr

—t | | | pm
U N
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in the forward flight design is found, but the difference is so slight that there is no noticeable
changes in the design results. It would be difficult to characterize the difference in results
for the forward flight, except that direct optimization may offer a slight edge in the overall
robustness. Most of the improvement in the hover design is in the roll bandwidth (see
Table 7.7). The improvement is gained at the expense of sensor robustness (Table 7.13).

7.13 Conclusions

Applicability of the CLTR technique has been demonstrated on the control of the UH-60
rotorcraft for two flight conditions. The results are presented for the hover and 15-knot
forward flight conditions. They are found to be satisfactory in terms of ADS-33C require-
ments. It turns out that the feedforward controller dynamics at the two flight conditions are
nearly the same, but a low-order set of ideal response dynamics should be feasible for any
flight condition. With the given ideal model dynamics, a reasonable state-feedback design
can be synthesized.

Not all the requirements in ADS-33C can be tested in the regime of linear models.
Generally the controllers are found to meet the requirements for Level I qualities, except, as
noted, for pitch and roll rate responses. The 14**-order Luenberger observer-based controller
for hover does not meet Level I characteristics for roll bandwidth, and the result has been
improved via direct optimization. This is not indicative of the limitations in the CLTR
design procedure. It is believed that an improved state-feedback design for the hover case
would have led to better output-feedback controllers via CLTR.

The proposed design technique based on CLTR should be applicable to other flight
conditions. Evaluation of the CLTR design process for the hover and the forward (15 knot)
flight conditions shows that most of the design tradeoffs occur in the synthesis of the state-
feedback design. Once the problems of stability, performance and robustness have been
solved in the LQ synthesis, recovery of these closed-loop properties becomes a much more
routine process under CLTR. Although the procedure of numerical CLTR requires the
tailoring of objective weighting matrices for an optimum design at each flight condition, an
accurate selection of the weighting matrices is not significant to the overall results.

The order of the overall synthesis model in a CLTR design using numerical optimization
is nearly prohibitive. Some shortcuts are performed to reduce the size of the overall CLTR
system. A reduced-order (7 state) feedforward controller is used to drive both the state
feedback (i.e., target) closed-loop model and the nominal open-loop model. The state-
feedback system with 4 sensor output delay states is 35 order, while the open-loop plant
with a full set of sensor output delays is 47** order. With integral control (4 states) for both
state- and output-feedback, and a 14**-order observer, the overall dynamics quickly add up
to a synthesis model of 111 states. An optimization on such a system takes substantial
computing time, and is prone to have defective eigenvalues throughout the optimization
run. The design results rely heavily on the reliable algorithm developed in Chapter 3.

The procedure in direct optimization design is facilitated considerably by the results from
CLTR. The initial choice of objective weights can be developed from the LQ synthesis, and
the initial controller can be taken from the CLTR design. In fact, the choice of controller
order would not have been possible without the CLTR design followed by a model reduction
procedure. One can conclude that design based on direct optimization would have entailed a
much more tedious process if not for the useful insights developed from the CLTR procedure.
The CLTR process becomes truly an integral part of the direct optimization design.
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Table 7.6: Hankel Singular Values, Luenberger Observer

Hover | 15knot Forward
1: 19.6542 22.3400
2: 16.1352 18.2805
3: 14.3219 15.3796
4: 11.1515 10.5320
5: 9.9974 9.0218
6: 6.5465 7.0539
7 4.7171 6.7871
8: 3.4355 4.8661
9: 3.2165 3.3467
10: } 2.7132 3.2328
11: | 2.1561 2.4144
12: | 1.8829 1.8143
13: | 1.6118 1.2724
14: |1 1.1177 0.7836
15: 1 0.5927 0.6148
16: | 0.4878 0.4694
17: | 0.3356 0.3540
18: | 0.2910 0.2724
19: | 0.2061 0.1688
20: | 0.1795 0.1533
21: | 0.1721 0.1211
22: | 0.1270 0.1111
23: | 0.1071 0.0884
24: | 0.0967 0.0551
25: | 0.0190 0.0495
26: | 0.0003 0.0030
27: | 0.0002 0.0025
28: [ 0.0000 0.0005
29: | 0.0000 0.0000
30: | 0.0000 0.0000
31: | 0.0000 0.0000
32: | 0.0000 0.0000
33: | 0.0000 0.0000
34: | 0.0000 0.0000
35: | 0.0000 0.0000

Table 7.7: Single-Loop Sensor Robustness Properties, Hover

Roll Pitch Heave Yaw Rate
Design Gain Phase Gain Phase Gain Phase Gain Phase
Full State 6.13db, 52.36 | 8.84db, 48.85 | 47.15db, 58.48 | +5.97db, 57.39
+Integrals <-40db <-40db <-40db <-40db
Luenberger | +5.64db, 49.92 | +6.88db, 49.75 | +5.01db, 54.80 | +6.31db, 44.75
Observer <-40db <-40db <-40db -16.04db
25th Order | +6.43db, 49.93 | +6.60db, 49.81 | +5.39db, 50.17 | +6.73db, 44.77
Luenberger | <-40db <-40db <-40db <-40db
14th Order | +3.98db, 45.00 | +5.60db, 46.68 | +5.44db, 52.98 | +5.24db, 43.27
Luenberger | -12.41db <-40db <-40db -13.78db
14th Order | +4.03db, 34.95 | +5.98db, 43.71 | +6.29db, 5893 | +5.07db, 41.95
Direct Opt. | -6.89db <-40db -28.96db -29.20db
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Table 7.8: Single-Loop Actuator Robustness Properties, Hover

Collective Sine Cosine Tail Rotor
Design Gain  Phase | Gain  Phase | Gain  Phase Gain Phase
Full State >40db, 65.00 | >40db, 80.63 | >40db, 70.80 | >+40db, 91.55
+Integrals | <-40db <-40db <-40db <-40db
Luenberger | >40db, 65.00 | >40db, 84.59 | >40db, 73.97 | >+40db, 91.55
Observer <-40db <-40db <-40db <-40db
25th Order | >40db, 65.00 | >40db, 80.63 | >40db, 70.79 | >+40db, 91.55
Luenberger | <-40db <-40db <-40db <-40db
14th Order | >40db, 48.40 | >40db, 74.97 | >40db, 59.89 | >+40db, 97.21
Luenberger | <-40db <-40db <-40db <-40db
14th Order | >40db, 61.28 | >40db, 57.46 | >40db, 67.38 | >+40db, 103.82
Direct Opt. | <-40db <-40db <-40db <-40db
Table 7.9: Multiloop Actuator Robustness Properties, Hover
Independent

Design +GM. -GM. PM.|a(I+G() | eI+ G 1(s))

Full State 400 db, -10db  60° 0.992 0.693

Luenberger Observer +o0odb, -10db  60° 0.992 0.693

25th Order Luenberger | +00 db, -10db  60° 0.992 0.693

14th Order Luenberger +12, -7 40 0.715 0.571

14th Order Direct Opt +12, -7 40 0.700 0.607

Table 7.10: Single-Loop Sensor Robustness Properties, Forward Flight

Roll Pitch Heave Yaw Rate
Design Gain Phase Gain Phase Gain Phase Gain Phase
Full State 6.86db, 49.89 | B8.48db, 47.70 | 4+6.16db, 61.03 | +7.24db, 61.20
+Integrals <-40db <-40db <-40db <-40db
Luenberger | +5.49db, 49.70 | +6.82db, 44.99 | +6.89db, 61.03 | +4.39db, 44.94
Observer <-40db <-40db <-40db <-40db
25th Order | +5.38db, 49.36 | +6.84db, 44.99 | +6.89db, 64.80 | +5.29db, 43.91
Luenberger | <-40db <-40db <-40db <-40db
14th Order | +5.41db, 44.70 | +6.56db, 43.88 | +6.48db, 54.95 | +5.43db, 42.01
Luenberger | <-40db -28.61db <-40db <-40db
14th Order | +5.41db, 44.70 | +6.85db, 43.88 | +6.48db, 54.95 | +4.61db, 42.01
Direct Opt. | <-40db -28.61db <-40db <-40db
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Table 7.11: Single Loop Actuator Robustness Properties, Forward Flight

Collective Sine Cosine Tail Rotor
Design Gain Phase | Gain Phase | Gain Phase Gain Phase
Full State >40db, 64.29 | >40db, 74.95 | >40db, 74.90 | >+40db, 90.34
+Integrals | <-40db <-40db <-40db <-40db
Luenberger | >40db, 64.95 | >40db, 74.77 [ >40db, 75.00 | >+40db, 90.34
Observer <-40db <-40db <-40db <-40db
25th Order | >40db, 64.28 | >40db, 74.84 | >40db, 75.00 | >+40db, 90.34
Luenberger | <-40db <-40db <-40db <-40db
14th Order | >40db, 45.93 | >40db, 54.34 | >40db, 57.23 | >+40db, 90.44
Luenberger | <-40db <-40db <-40db <-40db
14th Order | >40db, 45.93 | >40db, 54.94 | >40db, 59.51 | >+40db, 90.44
Direct Opt. | <-40db <-40db <-40db <-40db

Table 7.12: Multiloop Actuator Robustness Properties, Forward Flight

Independent
Design +GM. -GM. PM.|a(I+G(s) | eI +G1(s)
Full State +oo db, -8.5db  60° 1.000 0.632
Luenberger Observer +oco db, -8.5db  60° 1.000 0.632
25th Order Luenberger | +oo db, -8.5db  60° 1.000 0.632
14th Order Luenberger +12, -9 40 0.710 0.660
14th Order Direct Opt +12, ) 0.709

9 40

0.659
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Table 7.13: Design Evaluation, Hover

Test Result ADS-33C | Full State | Luenberger | 25th Order | 14th Order | 14th Order
Target Feedback Observer Luenberger | Luenberger | Direct Opt.
Pitch Bandwidth Fig lac 3.344 2.642 2.648 2.699 2.510
Phase Delay (3.3) 0.147 0.187 0.186 0.184 0.182
Roll Bandwidth Fig 1bd 5.333 3.626 3.649 2.819 3.485
Phase Delay (3.3) 0.080 0.120 0.120 0.086 0.104
Yaw Bandwidth Fig 5 5.311 4.112 4.116 4.240 4.130
Rate Phase Delay (3.3) 0.061 0.104 0.105 0.102 0.113
Heave Time Constant < 5.0 2.981 2.872 2.856 2.816 2.876
Delay (s) < 0.2 0.114 0.169 0.173 0.171 0.195
Pitch  Rate from 1° step > 1.6 1.160 1.177 1.175 1.234 1.220
from Roll < 0.25 0.012 0.010 0.010 0.016 0.007
Roll Rate from 1° step > 24 1.813 1.832 1.829 1.914 2.020
from Pitch < 0.25 0.009 0.011 0.011 0.022 0.009
from side gust < 0.66 0.264 0.292 0.202 0.297 0.283
Yaw from head gust < 0.66 0.264 0.292 0.292 0.297 0.283
Rate peak, from heave < 0.65 5.8e-4 8.2¢-4 9.1e-4 65.1e-4 59.7e-4
oscil., from heave < 0.2 5.8e-4 8.1e4 11.8e-4 13.2e-4 45.Te-4
for 1° Yaw change | = > 24 2.800 2.773 2.835 2.861 3.430
Table 7.14: Design Evaluation, Forward Flight
Test ADS-33C | Full State | Luenberger | 25th Order | 14th Order | 14th Order
Result Target Feedback Observer Luenberger | Luenberger | Direct Opt,
Pitch Bandwidth Fig 1 3.741 3.301 3.296 3.325 3.324
Phase Delay (3.4) 0.150 0.190 0.189 0.180 0.180
Roll Bandwidth Fig 2 5.770 4.825 4.810 4844 4844
Phase Delay (3.4) 0.176 0.136 0.136 0.115 0.115
Yaw  Bandwidth Fig 8 5.329 4.059 4.063 4.244 4.244
Rate Phase Delay (3.4) 0.061 0.105 0.107 0.112 0.112
Heave Time Const. <5.0 2.957 2.960 2.952 2.836 2.836
Delay (s) <0.2 0.115 0.174 0.176 0.178 0.178
Pitch from vertical accel. <10 0.00779 0.00779 0.00867 0.00822 0.00822
from Roll Cmd. <0.25 0.002 0.002 0.002 0.006 0.006
Rate from 1° step > 24 1.860 1.847 1.839 1.846 1.846
Roll Osc. from 1° step Fig 5(3.4) 0.00223 0.00217 0.00151 0.00172 0.00171
from Pitch Cmd. <0.25 0.014 0.013 0.013 0.012 0.012
Sideslip from 1° Roll step | Fig 6(3.4) 0.110 0.110 0.111 0.105 0.105
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Chapter 8

Future Work

8.1 Evaluation of Worst—Case Method for Loop Transfer
Recovery

It is perceived that minimizing the worst—case difference between the closed-loop responses
of a state feedback design and a those corresponding to a low order output-feedback con-
troller case to a given range of disturbances would produce a more acceptable controller
than from the H? norm of the error. Given reasonable recovery, such a controller would be
less prone to extreme variation from the state feedback characteristics. This would include
loop transfer properties used in robustness measures. There exist several good test problems
where this design algorithm can be exercised.

8.2 Completion of the Hybrid Algorithm

The decomposition of the system matrix into a partition of non—defective eigenvalues and a
partition of defective eigenvalue blocks, as detailed in Appendix A, needs further evaluation.
A thorough test must preceed the conversion of the algorithms for computing ‘X and M to
the hybrid form.

The hybrid procedures for evaluating X and M, given in Appendix B, are more intri-
cate than either the robust or diagonal forms due to the presence of cross terms. These
cross terms are integrals containing both non-defective eigenvalues and defective eigenvalue
blocks. The additional numerical complexity was relatively slight for the X calculation
where simple closed form solutions could be derived to reduce the complexity of the cross
terms. Explicit handling of every cross term in a custom formula may yield rewards in
speed and memory usage. However, in the case of M, the problem is much more difficult.
For example, for the double integral containing the defective eigenvalue block W¢

t rv
/ / M9 B;1,e"CV Dy 6% dsdv,
o Jo

it may still be as efficient to simply apply the robust algorithm using these arguments.

8.3 Eigenvalue/Damping Constraints

A tidy design is often achieved in pole placement. While exact pole placement is not
possible within the context of numerical optimization, building a cost function based on
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pole attractors [3] or forcing designated poles into a selected region [6] would seem to
be. Creating a cost function that includes eigenvalue constraints and yet is robust to the
degenerate mode condition is a subject for further reseach.

8.3.1 Current Method

The current method for eigenvalue constraint depends on the eigenvalue—eigenvector de-
composition, and thus will not work when degenerate eigenvalues exist in the closed-loop
system model.

The eigenvalue constraints and their gradients with respect to the controller design
parameters are defined as follows. Given a system matrix A we let

A’U,; = /\,;'Ui (8.1)

where \; and v; are the eigenvalues and eigenvectors, respectively, of the system matrix A.
We define a simple constraint function that is zero when the eigenvalues are in the desired
stability region, or a nonzero value equal to the distance away from the desired stability
boundary. One such function is

1 & 2
Jo = 5; {maz(o; — Omaz,0)}

This would reflect a cost function on real (or real part of) eigenvalues greater than a certain
omaz. It would be zero if all eigenvalues were less than omaz.
In addition to constraining the real part, one usually needs to constrain the damping

ratio
a;

to be larger than a certain value (say {min). Consider

1

n
=3 > {maz(o;sina + |wi| cos a, 0)}?

=]

Je

mine Luach summand of this function will be zero

if the corresponding eigenvalue satisfies the constraint; otherwise, it will be equal to the
square of the distance from the offending eigenvalue to the damping line.

The above constraint functions are differentiable and their gradients are useful for numer-

ical optimization, especially for the nonlinear programming algorithm NPSOL [21]. Given

where cosa = (min and sina = /1 — ¢2

n

Jr = l Z {maz(o; — 0'7ru:1.:1:)0)}2

23
we have
8Js _y {max(m — Omaz, O)Qﬁ}
o = op
Also, the damping constraint gradient is
n
% = ; {mam(a,- sina + |w;| cos @, 0) (%—2 sina + sgn(w;) a;;' cos a)}
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For non-degenerate eigenvalues, these gradients are well behaved.

Note that the constraint gradients are expressed in terms of the gradients of the closed-
loop eigenvalues. Taking the derivative of equation (8.1) with respect to a parameter p, we
have

ap ' op op ' op
oF: Ou O\ 9A
(A-aDZ Ty = 22y,

The objective is to find an equation without a %%i term. One can diagonalize: A =
TAT!, where A is a diagonal matrix containing the eigenvalues of A. With this transfor-
mation applied to the above equation, we have:

(M= XM O ) ) . ) 0 |
0 )
0 Xici—M O . ]
0 0 0 ) T-I‘Z”——T— OX T-l-%f-v,-
0 Asi—X 0 . P op P
) ) 0
|0 ) ) ) . 0 An—Xi |

The i** equation from the above set shows a simple relation between %El and & —9”7 without a
term %%i, thus one can write:

o _ (T'%w),
op B (T I'Uz),,

The notation (.); denotes the i** row of the enclosed term. For complex eigenvalues, o + iw,
the real and imaginary parts of the above are 5 2 and 22, respectively. Note that when there

is a near degeneracy and the eigenvalues are nearly defective, T~! will be badly conditioned.

8.3.2 New Method of Eigenvalue Constraints

There are two equally important aspects of these constraints. First is the mechanization of
the constraints themselves. The second is the ability to identify those parts of the system
matrix where the constraints should apply. One often has disturbable yet uncontrollable
modes where the eigenvalues do not obey the constraints and would upset the optimization
process if so included. Moreover integral poles are often formulated to serve a control or
estimation purpose.

It could be possible with the proposed method of decomposing the system matrix into
eigenvalue blocks one could derive a means of calculating the eigenvalue derivatives for those
blocks. All attempts so far have seemed preliminary.

Finally it may become that the only really promising method for forcing designated
eigenvalues to a given region will be the plant transformation methods of Kawasaki and
Shimemura [6] or Bernstein and Haddad [8].
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Appendix A

Preliminaries to the Hybrid
Algorithm

A.1 Introduction

It has been shown that the original gradient computation based on the diagonal form is fast,
though inaccurate for defective systems. While the robust form described in Section 3.3 is
accurate under most circumstances, it is also slower by an estimated factor of 8 or 9. The
next question is whether one can apply the faster algorithm to the non-defective part of
the matrix and the slower one to the defective part, thereby resulting in a fast and robust
overall numerical scheme. Until such a scheme is actually implemented and tested, one can
only speculate. There is a clear direction, however, as to how to structure that procedure.

In order to have control over the separation of the diagonalizable part and the defective
part one must abandon the simple eigenvalue-eigenvector decomposition for a combination
of the Schur decomposition and a procedure to separate the set of defective eigenvalues from
the non-defective ones. This custom routine can then feed the actual hybrid computation
algorithm with the appropriate parts of the input matrix.

Once a matrix is in Schur form, there will be a block diagonal (consisting of individual
real eigenvectors and 2x2 blocks for complex pairs) along with an upper triangular part.
The 2x2 blocks are not yet in ¢ —w form. Moving non-defective eigenvalues apart from the
defective ones usually requires zeroing the upper-triangular interaction between these roots.
In fact, the very definition of a defective root depends on the ability to zero this cross-term.

A.2 Converting a 2x2 block to ¢ — w form.

Conversion of a general 2x2 diagonal block to the form: [ _aw (: ] depends on a rotation

and a scale conversion,
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where s = sin(¢) and ¢ = cos(¢). The result of the rotation is to bring the two diagonal
elements to equality. The rotated matrix becomes

ca+sc(f +b)+s2g —s2°f +sc(g—a)+c?b
Af +sc(g—a)—s?b  s2a—sc(f+b)+cg

Thus the condition on the diagonal elements results in
ca+sc(f+b)+s°g = s’a—sc(f+b)+cPg or
2sc(f+b) = (¢—s))(g—-a)

sin(2¢) =2s¢ = (g#;a)

cos(2¢) =c* —s* = ('f#:b) where

A = J(F+b)2+(g—a)?

Given values for sin(¢) and cos(¢), it remains to find the scaling terms that will bring the
off diagonal terms to being the opposite of one another (since the scaling will not affect the
diagonal terms). The result is:

G(U=D_8) _ b (U=h A

di 2 2 do 2 2
or
-b
dy fz +%
d1 - f-b _A '
2 2

Of course the argument under the square root must be positive, which can be written as
(f —b)? > A2

A.3 Reduction of a 2x2 Block to Upper Triangular Form

The transformation from an upper Hessenburg form to the real Schur form for a matrix
depends on the QR iteration. This iteration has some difficulty for a matrix with defective
degenerate eigenvalues. Thus, there can be nonzero sub-diagonal elements not associated
with complex eigenvalues. It is possible for one to see nonzero subdiagonal elements for
a whole Jordan block, but usually one sees only a scattering of 2x2 diagonal blocks. It is
sometimes necessary to check each 2x2 block to see if it is non-converged or if it really is a
complex pair. Zeroing a sub-diagonal element can be done with a Givens rotation

B

ca+sc(f+b)+s%g —s2f+sclg—a)+c? |  [ad V¥
Af+sclg—a)—s*0 sPa—sc(f+b)+cg |

resulting in
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Thus, 2 f + sc(g — a) — s2b = 0. This can be manipulated into

cos(2¢) (%) + sin(2¢) ('g__;j) = (é__g_f) .

To solve the above, we can consider it like a linear differential equation- there is a homo-
geneous part and a particular part. We can write:

cos(2¢) = Ki(a—g)+Kzf+b)
sin(2¢) = Ki(f+b)+ Ka(g —a)

with

_ b—f
Ko = mryerraoee

[(g— a)2 +4bf]'"2
[(f+02+ (g -0

K, is associated with the “particular” portion and scales it to be equal to the term b—;i
K normalizes cos?(2¢) + sin?(2¢) = 1. Note that one has the condition: (g —a)%+4bf > 0
which complements the condition facing the transformation converting 2x2 blocks into the
o —w form. In other words, if this condition is not met, it is a complex eigenvalue pair.

K, =

A.4 Reducing the Schur Matrix to the Diagonal Form

One can subdivide the problem of zercing the upper triangular portion of a Schur matrix
into 4 cases that arise when one tries to zero the cross-term between roots. All of these cases
are just specifications of the general form specified in {27]. When a matrix has been Schur
decomposed there will, in the most general form, be an upper triangular partition along
with a diagonal of real roots and 2x2 complex pairs. A normal matrix will be diagonalized
by a Schur decomposition— the Frobenius norm of the strictly upper triangular partition
of the matrix is known as a matrix’s departure from normality (see [23]). To diagonalize the
upper triangular matrix we have to use nonunitary similarity transformations. The most

convenient form is
_ I I . -1 _ I ! .
R—[O I]’R _[0 I }’

Suppose that one were to zero the upper triangular part between two diagonal submatrices
with this transformation:

I -P A T I P| |A T—PA+AP

0 I 0 A o I| |0 Ao
In general, one has the Lyapunov equation: T'— PA2+ A; P = 0 to solve. This equation has
a solution provided that there are no eigenvalues in A; equal to those in A;. However, in
general, the presence of degenerate eigenvalues, whether defective or not, will make deter-

mination of this transformation impossible. Not only that, but in numerical computation
defectiveness is more of a condition to be approached in a continuous manner rather than an
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on-off setting. A measure of this more continuous form of defectiveness is in the condition
of the transformation (diagonalizing) matrix. The condition of the overall transformation
matrix will be helped by limiting the condition allowed for these individual non-unitary
transformations. By declaring a minimum allowed condition, one thus detects, in a sense,
which eigenvalues are part of a diagonalizable submatrix and which are not. (Because the
inverse is explicitly known, this condition is easy to estimate.)

It may actually be that a pair of distinct (but close) eigenvalues will get declared a
degenerate pair, but this will only impose a slight time penalty on the eventual calculations.
It can be said that the resolution on the eigenvalues was not sufficient to consider them as
distinct.

Fortunately, non-defective degenerate eigenvalues form a sort of normal submatrix so
that their cross-terms are already zero as a result of the Schur decomposition—zero being
the effective zero for a given machine precision, the oc — norm of the matrix, and the
machine zero given the algorithm for the subdiagonal elements. It is possible to detect this
relative zero condition and avoid problems in solving for a transformation matrix—by not
having to solve for a transformation matrix at all.

The end result will be the diagonalization of the non-defective eigenvalues, the con-
tinuance of an upper triangular block for the defective eigenvalues, and a transformation
that will remain well-conditioned. What becomes necessary, however, to keep the problem
tractable is to break the cross-term zeroing into 4 cases: 2 real roots; a real root and a
complex pair; a complex pair and a real root; and finally, between two complex pairs.

A.5 Reducing the Upper Triangular Part Between 2 Real
Roots

Reducing the upper triangular part between 2 real roots is the first (and easiest) case. One

literally has
I —p A1tz L p
0 1 0 X 0o 1]’

resulting in p = A_;FXT One does not need to solve for p if ¢5 is relative zero for the matrix
(thus, it would not matter if A\; = A2).

A.6 Upper Triangular Part Between a Real Root and a
Complex Pair

This case is elucidated separately mostly as a means of showing notation. The submatrices
of interest would be

1 —pu —pr2 M1 otun tiz | [ 1 pn P12
0 1 0 0 An A 0 1 0
0o o0 1 0 Au Az |[0 0 1
Zeroing t1; and ;2 results in the following system of equations
A —2n Agi pu | _ | tu
A A2 — An P12 | t12

which should always be solveable. In any case, one could always check for a zero solution
here as well.
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A.7 Upper Triangular Part Between a Complex Pair and a
Real Root

This case is distinct from the above due to a slight difference in equations and notation
1 0 —-pn An A in pn

1 0
0 1 —pxu A2 A i 0 1 pxu
00

2
00 1 0 0 An 1

Zeroing t1; and tg; results in the following system of equations
An - A pu | _ | tu
—A21 Ann— Ao P21 t21
A.8 Upper Triangular Block Between 2 Complex Pairs

Here one solves for the 2x2 block that zeros the upper triangular portion between a set of
complex pairs (not necessarily in ¢ — w form)

1 0 —pi1 —pi2 Air A2t tie 1 0 pn pr2
0 1 —p21 —p22 A21 A2 a1 P22 0 1 poa1 p2
0 0 1 0 0 0 An Arpg 0 0 1 0
0 0 0 1 0 0 A A 00 O 1
The accompanying system of equations is
A — A A —Ai2 0 n tn
Ao A2 — A1 0 =12 P2 | _ | ti2
—A2; 0 A — A2 Aoy P21 t21
0 —A21 A2 Az — A2 D22 too

A.9 Using These Techniques for Zeroing Blocks

The emphasis here is to make sure that one can separate non-defective eigenvalues (and as-
sociated eigenvectors) from a blocks containing defective ones. While physically separating
individual eigenvalues (or complex pairs) from each other and from defective degenerate
blocks while zeroing the upper triangular part between the two may sound appealing, it
is easier from the bookkeeping standpoint to keep the diagonal terms fized, then organize
them at the end.

Thus one can proceed through the upper triangular part of the matrix in a sequential
order, using some sort of indexing array to encode the solitary eigenvalues, the complex
pairs, and those eigenvalues belonging to a block of defective degenerate eigenvalues. At
each upper triangular element (or block if this element associates one or more complex
pairs), one can attempt to zero the members using the methods previously indicated. If a
defective degenerate condition is indicated, the association with the eigenvalues will indicate
the appropriate block to assign the eigenvalues.

Those eigenvalues whose associated upper triangular parts have been zeroed can be
moved past one another in a matrix by a simple shift transformation. The rest will collect
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into blocks when they encounter eigenvalues they cannot shift past. These subblocks will

be upper triangular and there will be no need to put them into Jordan form.

A

Schur Form:

Uiz
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Appendix B

Cost and Gradient Computation
Using The Hybrid Algorithm

B.1 Introduction

The current two methods within SANDY represent two extremes in the handling of matrix
functions: the faster original “diagonal” method decomposed the argument matrices into
eigenvalues and eigenvectors, then applied scalar functions to the diagonal terms; while the
nominallly more robust method used an exponential series to compute a function of the
whole matrix.

While the diagonal method depends on successfully determining an eigenvalue—eigenvector
decomposition, the robust form also has a weakness—precisely where the diagonal method
is best suited. If one has scales in a matrix that are wildly varying, the robust form is
more prone to error, even to the point where a defective-degeneracy does not look so bad.
Consider a root matrix

" —1.0E —8 1 0 0 0 0
0 ~10E-8 0 0 0 0
Ao 0 0 18 1 0 0
0 0 0 18 0 0
0 0 0 0 —10E+8 1
i 0 0 0 0 0 ~1.0E+8 |

This matrix is transformed by the following matrix:

[ 0.2113 0.4524 0.6538 0.7469 0.1167 0.2260 ]
0.0824 0.8075 0.4899 0.0378 0.6250 0.8159
0.7599 0.4832 0.7741 0.4237 0.5510 0.2284
0.0087 0.6135 0.9626 0.2613 0.3550 0.8553
0.8096 0.2749 0.9933 0.2403 0.4943 0.0621

| 0.8474 0.8807 0.8360 0.3405 0.0365 0.7075

The condition of this matrix is 51. This should not introduce any complications in this
comparison of methods. Because fundamentally all calculations depend on taking an expo-
nentiation a good test case can be founded on the comparison of exponentiation calculations.
Matrix exponentiation of the component submatrices of A and transforming by TAT ! gives
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the most accurate result,

[ 0.4628 —1.2715 1.9936 1.0176 —1.4230 —0.4304 T
0.3284 —0.3895 0.2382 0.3651 —0.1007 -0.1652
0.5318 —1.0083 1.2521 0.8541 —-0.8324 —-0.3708
0.6519 —0.9672 0.9181 0.8599 —0.5438 —0.3810
0.6717 —0.9664 0.8768 0.8650 —0.5069 —0.3843
| 0.5702 —0.9626 1.0705 0.8333 —0.6824 —0.3651

1.0F + 8 x

Suppose one transforms A and then exponentiates, the difference with the previous calcu-
lation would be

[ —158.9406 175.7559  8.2702  —210.1598 —70.0591 84.2343 ]
—22.1443 57.9680 —55.9843 —60.4853  30.5230 21.5482
—95.5913 147.6670 —69.7673 —164.4468 11.1770 63.0574
—70.9993 145.2202 —-113.4331 —154.9395 51.9346 57.2788
—58.3577 151.9611 —153.7657 —156.0765 86.3283 56.7881

| —83.6180 141.6097 —81.9972 —155.5265 24.5134 58.7931

This error is still only on the order of one part in 106. An exponentiation arrived at by the
diagonal method does not have as much error though the matrix is defective degenerate,

[ —19.0856 23.9609 -13.3939 —24.0870 4.2366 10.6407 ]
—6.1430 5.6210 0.5094  —6.3906 —2.4559 2.9409
—15.4594 17.7026 —6.9271 -18.3993 0.3217 8.2278
—-15.4252 16.3490 -3.9463 —17.4740 -—-2.0148 7.9009
—15.4366 16.2809 —3.7615 —17.4420 -—-2.1720 7.8944
| —15.2599 17.0281 —5.8801 —17.8393 —0.4249 8.0123

The condition of the eigenvector matrix is 9.9927F + 4 due to the defectiveness, thus the
calculation is probably not too impaired.

Thus, it is hoped that, in addition to an increase in calculation speed, this algorithm
will be made more complete.

B.2 The A Integral

The simpler of these integrals is X(t) = fot eA” BeC™ dr. The matrices A and C can be de-
composed along the lines of an eigenvalue— eigenvector decomposition, but only for the non-
degenerate eigenvalues. The degenerate eigenvalues are decoupled from the non-degenerate
eigenvalues, but are otherwise left in a non-diagonalized matrix. The non-diagonalized part
of the matrix will consist of decoupled blocks of degenerate sets of eigenvalues. This decom-

position is based on a Schur decomposition with a selective eigenvalue shift and a decoupling
algorithm. We have

Ay O

vl g

] V! and C=VC[AOC o ]V(;l
C

with A4 and Ac both being diagonal. For the exponential
A 0 A 0
At _ A -1 o A -1
€ —ea:p{VA[ 0 WA]VA t}—VAea:p{[ 0 WAlt}VA .
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This results in the following form for X’

i
X)) = /eATBeCTdT
0

t Ag O Ac O -1
= Va {/0 ea:p{[ 0 WA]T}Bemp{l 0 WC}T}dT} Vo' (B.1)
where B = V7 ! BV. The exponentials can be expanded and X can be separated into parts
involving only the non-defective eigenvalues, the defective degenerate part, and combina-

tions of both. For
Bi1 B
B = B.2
[ Bar Ba } (B.2)

we have

X(t) =Va [ 7% (B.3)

fot GAATBueACT dr fot CAATBQCWCT dr
fg eWATByefeT dr fot eVaTByeWer dr

As a result one can use the algorithm used in [18] for the upper left partition (usually all or
most of the matrix), and thus preserve speed. The remaining portions involve various uses
of the exponential to represent the integral.

Consider the similar forms for the integrals of the upper right and lower left blocks.
These involve a combination of a diagonal portion and an irreducible portion (typically of
dimension much smaller than the original matrix). For example, one can rewrite the upper
right integral in the following way

Xia(t) = /0 { AT e WoT dr (B.4)

with
Xiw(t) = the k** row of X}y (B.5)
- /0 L AT by e (B.6)

For when A4 is a scalar, bew is the k** row of Bj;. The number of columns in bew
corresponds to the number of columns of the degenerate matrix We. Because these matrix
integrals can be broken down row by row, in the case of the upper right block, or column by
column, in the case of the lower left block, there is a considerable time savings. Computation
of the matrix exponential corresponding to the integral f(;’ e BeC™ dr for a general A, B,
and C is on the order of (dim(A) + dim(C))? floating point operations. Breaking down this
integral by rows (or columns) results in the advantage of evaluating several small integrals.
This special integral form allows us to write:

t
Kiew(t) = /0 b €Yo rraxDT gy

An algorithm for evaluating the matrix exponential integral will be presented in section B.4.
For A s being a 2x2 complex root pair block, the situation is a bit more complicated.

Since
g w o] cosw sinw
exp =g . ,
-w o —sinw cosw
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one can expand the integral (B.6):

t ¢
Xiw (t)[coll] = / e’ A*7 cos(wakT) bewe” T dr + / e” 4k sin(wAxT) bk+1wewcT dr
0 0
t t
Xiw(t)[col2] = / e’ 4%T cos(wakT) bk+1WeWcT dr — / e 4*7 sin(w 44 T) bkweWCT dr
0 0

Again, with €747, coswaxT, and sinwak7 as scalars we can re-arrange the above integrals
into forms depending on two basic terms:

t
/ eWotroaD)T cos(war) dr
0

and

/Ot eWetoaeDT gin(waet) dr
An algorithm for computing these terms will be presented in section B.5.

The lower right portion (containing only the degenerate eigenvalue matrices) will have
to be evaluated with the pure exponential form of the integral evaluation. The size of the
degenerate matrix blocks should not be very large relative to the number of non-degenerate
eigenvalues. Not only will this keep the overall computation from slowing down, but the
eigenvalues shall nominally be of the same relative magnitude.

B.3 The M Integral

This integral yields a somewhat more difficult set of cases of integrals to evaluate, as we
shall see.

The integral M(t) = [5 [y eA®~9 Be“” DeF* dsdv becomes, when A, C, and E are
partitioned into non-defective and defective parts.

t v eAA(v—s) 0 eAC‘U 0
M(t) = TA/O/(; [ 0 eWalv—s) B 0 eWev
ES

eh 0 _
’D[ 0 (Wes |GsdvTg!

o t rv
/ / eAA (v—s) BneAc”
0 JO

l
D11eMES ds dv | D12eWES ds dv
+/t /u ehatv=s) B ,eWer | +/t /u ePa(v=s) B eWer
0 Jo 0 Jo
Do1e2E3 ds dv | DooeWES ds du

l
DueAEs ds dv ' D126WE3 ds dv
+ ¢ BWA (v—-3) B eWCv , + /t eWA (v—s) B eWc'u
0 JO A 0 Jo W
| Dme B dsdv | D226 BS dsdv



where

_ By Bz
T;'BTe = B =

A ¢ Ba1 B
- D1 Di2
T;'DTgy = D =

c ZIE Da1 Doy

The first part of the M;; surnmand can be evaluated in the standard fast way, so it
would be desirable to be able to evaluate the second integral as quickly. One can solve
analytically for the integral over s. Let’s assume initially that the eigenvalue is real. We
have

t pv
/ / e""(”")BmeWC”Dglje)‘fs dsdv
0 Jo

t v
= / eM? (/ e(a—Hi)s ds) Bi12e"CDyy; du
0 0

t oAV Asv
[ Rl W,
= o Ty o Bz Puyde
j 1
B;12 ¢ . .
A_ L /\ A (e(WC"l‘AJI)'U - e(Wc-}-A.I)'U) dU D?lj
] TN

The end result is just the matrix exponential integral again. For a complex pair, one has
to deal with a 2x2 block (looking just at the integrand)

e%(v=3) cos w; (v — s) Birg + €%(*=%) sinw;(v — s) Bit1,12
e%(v=5) cos wi(v —8) Bit1,12 — e%(v=3) gin wi(v — 8) Bix2
Dajje?i*coswis | Darj+1€7° cosw;s
—Dq1j+1€%%sinw;s | Dayje*®cosw;s

This becomes

eo’;ve(dj —0’;)8

[COS Wy (v — S) B,;uCWCUDQU
+sinwi(v — s) Bi+1,1zeWCUD21j]
- COSW; s
- [cos wi(v — 8) B;12e"¢V Doy ;41

W,
[COS (JJ,‘(’U - S) 8“26 CvD2l,j+l
+ sinw;(v — s) Bi+1,12€chD21,j+l]
- COSW;
+ {cos w;i (v — 8) Bi12€VCV Dy
+ sinwi(v - ) B;‘+1,12€WCUD21,J'+1] + sin wi(v — S) B,;+1’126WCU'Dzlj]
-sinw;s

[cos wi(v — 8) Biy1,12€VC Dy [COS w;i(v — 8) Biy1,12¢"°¥ Doy 11
—sinw;(v — s) BﬂgewchZIj]
- COSW;j §
— [cos wi(v — 8) Biy1,12eWC" Dy 41

—sinw;(v — 8) BﬂQCWCuD21j+1]
- COS W; §
[cos wi(v — 8) Bit1,12€"CY Dy
—sinw;(v — ) B,-lgeWC"Dqu
sinw;s

: W,
—sin wi(v — S) B;1qe CUD21J.+1]
-sinw;s
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The integrals over s will boil down to these terms

Jy €373 cos(w; — wi)sds  [fy €773 cos(w; + wi)s ds

N eloi=oi)s sin(w; — wi)sds  fy el7i—0i)s sin(w; + wi)sds

Substitution of these back in for our 2x2 matrix will yield a series of integrals of the form

t 7
/ eWe+a' v ooq )y du
0

and . .
! -
/ eWe+a' Dvgin o du
0

The amount of algebra to get this matrix into a series of integrals on v is substantial.

Being able to re-express the integral over s in analytic form is not only sufficient for
simplifying the double integral but necessary. Changing the order of integration will in-
troduce numerically unstable terms that can be handled only by doing the whole double
integral numerically in the current “robust” M calculation. Thus one needs to have only
simple eigenvalues involved in the s integral. This happens only on the integrals in the My,
partition. The rest of the integrals will have to use the current robust form in some manner.

One could be given the impression that not much work and time is being saved. However,
a close examination of what happens when one does these other partitions with the robust
algorithm one will get a flavor for the amount of time saved.

Consider the sum for Mszz. With the following

t rv t rv
/ / 6WA(U_8)8218ACUD128WES dsdv = Z/ / eWA(0_8)3211'8AC“UD1'12€WE3 dsdv
0 JO . 0 JO
i

Considering that the overall cost of a direct matrix exponentiation is of O(n®) or more,
o w
—w o
is of no consequence as the sumnmands will be evaluated by a direct matrix exponentiation.

there is a net win. The fact that Ac;; may represent a complex pair in the form

B.4 Padé Series for Matrix Exponential Integral

In the hybrid formulation, one of the terms boils down to finding the integral of the expo-
nential of a matrix [; eA" dr. It was suggested [23] to compute this integral by taking the

following exponential:
0 I | I JleAmdr
{[3 4])=[s ¥

This technique was disputed in [29], where it was determined that a direct Taylor Series for
this integral was considered a better method. The basis for this was that the larger overall
matrix contributed not only to a lengthly computation time, but also a loss of accuracy. A
third alternative is presented here in the use of a Padé Series for computing the integral.
One could call this series the generating function for the integral, but for the fact that it
is simpler to assume that one is integrating over a unit interval. Since the matrix contains
all the scaling information in a typical function call, it is a safe assumption. We know that:

/1 e dr = A"le"“l1 =A"1 [eA - I]
0 0
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and N _

eAt ~ Pﬁ(Z) — MO ( )i

>izo Di(At)
SO

b ar _1Zito(N: — Dy) (At
eTdr~ A W :
The most commonly used case of the Padé Series for the exponential is a diagonal sequence
(order of the numerator is equal to that of the denominator). For this, a nice simplification
in the above equation occurs since, for i even, N; = D;, and for i odd, N; = —D;. Thus, we
can write the Padé Series for the integral generating function as:

Zilil,i=1+2 N;(At)¢-D

¢
/ eAT dr ~ tP' N (2) = 2t
0

o Di(At)?
with
(2N —i)I N!
M= Emnrv oo
L @N—IN!
b = D'Gmmv =

With t being 1, we have the integral being equal to this particular Padé Series.

Nominally one has to scale the input matrix so that its co-norm is less than 1/2. The
rescaling of the result is somewhat different than that of the matrix exponential. The matrix
itself doubles in scale, yet the integration interval does not change

1 1 2
/ eAtdt = = / e dr
0 2Jo
1 1 2
= _[/ eATdT+/ CATdT]
2 /o 1
1 ! AT A
= 5/0 e d‘r{l+e]

The term e” is easy to generate from the integral at each step, i.e., multiply fol et dt by
the matrix A and add I.

A

B.5 Padé Series for Integral of Matrix Exponential and Si-
nusoid

Another special form to handle from the hybrid formulation is

t t
/ e” sinwr dr or / e coswr dr.
0 0

Using the relationship
[ o w ] o [ cosw sinw ]
exp =€ . .
—-w o —sinw cosw
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Thus we can write

W+al wl _ e(W+al) 0 Icosw Isinw
Pl _wl WeoeI | T 0 eW+al) —Isinw Icosw

eWH D eosw  eW+oDginw

—eWHDginw W+ cosw
It would seem that we are doing twice as much work as we need be. Since the augmented
2n x 2n matrix has several symmetries, one can do specialized sets of multiplications to
exploit these symmetries and avoid use of more matrix storage than necessary. In the series
calculation, one will need to take squares, etc of the argument matrix

2
W+ol wl | W+oeD?-W%1 wol
—wl W+ol | — —wol (W +0o1)? — w21

One will have only 2 distinct submatrices within this matrix. Thus one need not do explicit
multiplies.

B.6 Scaling

Because all matrix blocks will have their eigenvalues on the diagonal and no sub-diagonal
elements, a single scaling parameter characterizes the magnitude of the resulting exponential
of the block. For example, in the block

[ Al Upp e v ul'n Al
0
i = Ai
0 Un—1,n 0 ’
L An ] L An .
r 0 ULy e ul,n ]
+ 0
0 Un—1,n
=3 0 -

where A; through M, are the same value. Because

wt _ e(AI+W’)t At W't

€ =e e

one can start with an integral like
i
/ eVaTBeWeT dr
0
and “balance” the two matrices into having the same diagonal value. Note that the smaller
modulus diagonal terms will probably reduce the number of scaling steps and/or series

length in the matrix exponential calculation, thus saving some time.
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For the calculation for M, the balancing of the matrix blocks is a more complicated job,
due to the existance of two separate integrals involving separate matrices

i t
/ / eA=9) BeCv DeEs s dy.
o Jo

However, because the procedure is simple, the attempt is worth it no matter how little
results one gets.
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Appendix C
An Algorithm for SCB

The following sections show different steps in the computation of the SCB transformation
discussed in Chapter 5. It is hoped that by proceeding from the simple cases and ending
with the more general ones, a better understanding of the algorithm can be achieved.

C.1 S.C.B. for Non-Strictly Proper SISO Systems

In a SISO system, the presence of a direct feedthrough term essentially eliminates most of
the work needed in computing the special coordinate basis. In this case, for the system

{a‘: = Az + Bu

y = Cz+ Du (C.1)

where u and y are scalar. With D # 0, all the states are basically “internal” states—the
input can go to the output directly without necessarily passing through an integrator. One
can rewrite the state equations by eliminating u in terms of z and y as follows,

#=(A-BD'C)z+ BD™ 1y

Clearly there is no longer a direct input term from u to any of the system states once the
substitution has been made. Note that in this case, the system invariant zeros are simply
the eigenvalues of the matrix (4 — BD~!C).

C.2 S.C.B. for Strictly Proper SISO Systems

Conceptually, this is the next easiest case. With no direct feedthrough term, the task is to
determine an output state with a direct feedthrough term through differentiation. Because
there is only one input and one output, only “output” states can have a direct input term.
Furthermore, the output states or its derivatives will always have a direct input term,
indicating that a SISO system is always left and right-invertible. We begin with the system

T = Az + Bu
= s

where u and y are scalar. Suppose that one transforms the states using an orthogonal
transformation V; so that one of the states is the output,

A A
Co=lc 0 -+ 0] = i Ag=VZIAVe = Oyy Oyz
o=|c | =CVo; Ao=VgAVg { hony AOuJ

pace 2% mrenmionaLLy gLk 12
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and

b0, 5
By=VIB= b0z, =lBOy].
. Oz
bOm(nkl)

resulting in the state equations

)=l ][]+ [52]

| = u

Zo AO:::y AO:r:r Zo Boz

In essence, we have taken one derivative of the output and this also implies that the system
has at least one infinite zero.

If the term By, (a scalar in a SISO system) is zero, then we continue to generate another
output state by differentiating 3. Namely,

fo = AoyyZo + AoyzZo
Making the appropriate substitution for g, we obtain
Yo = AoyyTo + Aoyz [AozzTo + AozyYo + Bozul

Because g is now a state variable, we can write the state equations for yo, o as

o 0 1 N 0 2o 4 0 "
h AOyJ:AO:z:y AOyy v AOyzAO::z 0 AOy:z:BOz

w5 ][]

Note that in SISO systems, §j; always contains the term with the highest derivative, and
1 covers the rest of the dutput states. In addition, one of the internal states zp can be
rewritten in terms of yo, Jo and the remaining states in zo using the equation

where

Yo = AoyyYo + AoyzTo (C.3)

Identifying which state among z¢ to be replaced by yo depends upon the structure of
Aoyz—it is prudent to choose the state corresponding to element in Aoy, having the largest
magnitude. Suppose that the j®* element of the state zg is chosen. Let’s denote this state
by Zo and the rest of the internal states in zo by £¢ with

Zo1
Zo2

To = | To(j-1)
To(j+1)

L Z0(n—1)
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Partitioning the state equation for zg into separate equations for o and £y, we have

Lo = AozzTo + Aozzfo + Aozylo + Bozu (C.4)
o = AozzZo + Aozzfo + Aozylo + Bozu (C.5)

Then using equation (C.3), we can express Zo in terms of the output states 1 and the
remaining states x; as follows,

Jo — AoyyYo — AoyzZo = AoyzZo,

or
ZTo = Aaylj ([—AOyy I] ) AOy:?:ml)

Iy _| %
o= [@1}_[1}0] (C.6)

~

1T = o

where we define

So far we have replaced two of the system states by output states. The next part of the
algorithm can be done recursively.

First, we can re-write the system model in terms of the output states y; and the re-
maining states z1. The resulting state equations are

N = Ayl + Az + Byu (©.7)
T = Ala:yyl + A1zz71 + Bizu
where
[0 1 0
Ay = + Azl [—Aoyy I
vy i AOyzA()zy Aoyy } |: AO!I:EAOJ:J': jl Oyz[ Ovy ]
[ 0 0
Az = - At Aoys
tyz i AOya:AOz:E ] { AOyzAO:r.i ] Oyz 20y%
Azy = |Aozy + Avzz Agys [— Aoy 1 ]]
Azz = Aozz — AozzAgys Aoys
[0
B =
v i AOyzBOz :|
Biz = Bo:
Partitioning of y; into ‘Zl is essential for starting the next iteration. There is no point
1

of taking the derivative of 7 in the formulation of new output states, as they have no direct
interaction with the z; states. Recall from the first step that we have §J; = 7. Subsequent
iterations would involve repeated differentiation of #;. Finally, at the k®:-iteration the
output state vector yx is given by
Uk
k= -

where the output  represents the k** derivative of the output Yo
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At the k** iteration, we have

Uk = AkyyUk + AkyzZk + Bryu (C.8)
w'k = Akzyyk -+ Akxzmk + kau

where

By, = : (C.9)
Apye = [ ]kx(n—k) (C.10)

0
Ay = | ¢ U c)

| Akgy Akgy |
If the term Byi, has some nonzero entry (i.e., bgg # 0), then the SCB transformation is
complete. Otherwise, one must continue to take derivatives of the output state §x as long
as there are nonzero entries in the term Agy,. Note that both the terms By, and Agy,
cannot be zero simultaneously in a SISO system since it is always right-invertible.

When the term By, is nonzero, then the k** derivative of yo has a nonzero control input
term. The control input u can be substituted out in terms of the output state, its derivatives
and the remaining internal states x; as

u =1/ [yk — Akgg ) — Arggle — Akgzxk]

This can also be accomplished by performing the following state transformation

HEEYE

P = Bix(Biy Bky) "' Bify = Bz [00 --- 01/byg]

Aff Afa _ I 0 Akyy Aky_,; I 0

Aus Aca P I || Aty Akez || P I |
After the transformation, the u input is removed from the state equations associated with
the internal states z, and we arrive at the final SCB form,

Ul _ [Assr Are [?/f] + [Bf u

Ta Agy Agal | Za 0
The system invariant zeros are simply the eigenvalues of the submatrix A,,. Clearly, some
criterion must be established in testing whether the term byy; at each iteration is zero or

near zero. Often, a pre-specified level of tolerance must be given to the SCB algorithm for
this singularity test.

where

and
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C.3 S.C.B. for Multi-Input and Multi-Output Systems

{

where we assume without loss of generalities that the matrices [BT, DT|T and [C, D] have
full rank.

Analogous to the non-strictly proper SISO case, we apply the singular value decompo-
sition to transform the inputs and outputs so that the direct feedthrough term takes on the
following form

Let’s consider the following system

= Az + Bu

Cz + Du (C.12)

8.
[

[0y 0 .o e 0]
0 oo 0 -+« -+ 0
0 -+ «vv g =+ 0
D=UpEpVE =Up _ Vi
0 PR 0 Om
0 T |

where Up and Vp are orthogonal transformations and the singular values are given in a
decreasing order ( o; > 02 > -+ > 0y > 0). The transformation Vg is applied to the input
% while the transformation UJ is to the output §. Further classification and partitioning of
the z states will still be required, as well as for any remaining input and output terms that
are not related to the direct feedthrough term. Note that the singular values can be zero
for some k < m. With the above input-output transformations, we define

ol
” —VDU
and o
(] T=
=U
b y - Dy

The output equation becomes

g1 _[C o 0] [a
o =lel=+ % o) 4]
Partitioning of {@#,u} and {#, y} depends on the rank of D. The matrix 3. p Tepresents the
upper-left nonsingular matrix of £p. And the matrix C and C are given by

£]-u

We can express i in terms of the output § and the system states z from the equation

U= Cr+ fJDﬂ as
@ = 35! [§ - Cql (C.13)

129



The system given in equation (C.12) can be re-written as
. = = 1}
T = Az + BVp { u}

or
# = Az + B + Bu

Using equation (C.13), we have

t = Az +Bu+ Ly
7 = Cr+3¥pi (C.14)
y = Cz
where
= A-B¥pIC
L = B!

First let’s consider the case where % comprises all of the inputs, hence the input u is non-
existent. Furthermore, if the outputs y is also non-existent, then the SCB transformation
is complete resulting in the following system,

{ ¢ = Az+ly (C.15)
g = Cr+Xpi
Clearly, the system is right- and left-invertible with no infinite zeros. Furthermore, the
system invariant zeros are simply the eigenvalues of A.

Let’s examine next the simple case where § comprises of all the outputs, then the
remaining inputs v must be associated with the internal states z in the equation

T Az + Bu+ Ly
{ j = Cz+3pu (C.16)
We can further distinguish the system states z into two subspaces identified with states x4
and z. corresponding respectively to the uncontrollable and controllable subspaces of the
inputs u, as discussed in Section 5.3. The resulting system is in the following SCB form

Taq Awa O Za 0 Lo} .

[ie} - [Aca ACC] Lfc} + [BJ u [Lc} Y
where the pair (Ac, Bc) is controllable. Clearly, the system is right-invertible (but not
left-invertible due to the presence of u) and has no infinite zeros. In this case, the system
invariant zeros are simply the eigenvalues of A,,.

If on the other hand there are outputs y in equation (C.14), then they need to be

converted into states in a manner similar to that shown in Section C.2 for SISO systems.
The procedure will be described in more details in Section C.4.

In the next section, we examine the general case where both u and y exist in the
equation (C.14).
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C.4 SCB Transformations for Decomposing the Remaining
States

Let’s consider the system given in equation (C.14) where the direct input & has already
been eliminated through the output . We now have the following system,

{a’: = Ax+Bu+Lj

. _ ca (C.17)

The task is to resolve the system into the 4 types of SCB states yy, ys, Za, and z.. The
first step follows conceptually the procedure in Section C.2 for SISO systems. We begin by
performing the singular value decomposition on the matrix C,

C = UczVZ
= Uc[Zc 0]V (C.18)
= [Co 0]VF
where Up and V¢ are orthogonal matrices and Yo is a nonsingular matrix of dimension
p — mg which is actually equal to the rank of C.

At the first iteration k£ = 0, we transform the states z such that some of the states are
outputs with the following state transformation

[ -yl (C.19)
Zo

Letting uo = u, the state model in equation (C.17) becomes

| _ yr Yo T T

, (C.20)
_ )
v B CVCLUO}
or
) - i ][] 2ol
[-’tOjl [AOzy Aozz Zo + Boz to + Loz Y (0'21)
Zo

Next, we identify the output states that have direct interaction with ug by examining the
term Bp,. Again using the singular value decomposition, we have

By = UBOyEBOy Vg;y
$ B 0] 1 (C.22)
UBOy |: Oov 0] VBOy
We then apply the following transformations to the inputs u and the outputs yo,
o]
Uy, Yo = | - (C.23)
| Yo |
and o
o
Vo, o = | (C.24)
| Uo |
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Clearly,

j : . v
{yz] =UZ, Aoy U, [z‘;} + Uy, Aoyao + Upy, Boy Vs, { ug } + U, Loy (C.25)
or
[20] - [Aogg Aogﬁ] [go] + liAOyz} ot [EBO,, 0] [’l‘fo} N [LOy] ) (C.26)
Yo AO??Q 751 LYo AOﬁz 0 0] |t LOi
and ) .
Zo = AOszBo‘, [%/2] + AozzZo + BO-’EVBov [gg] + Lozj (0.27)
or
Fo=[Aosg Aocg] [gg] + Aozso + [ BozVy, BozVy, ] [Zg] + Lozl (C.28)

In the state equation for g, we can eliminate the dependency on g using the following
equation

o = £33, [fo — Aogao — Aozgflo — Aogato — Loy

This procedure can also be accomplished by invoking the following state transformation

:(2() I 0 0 Qo
Yo |{=| 0 I 0 Yo
Zo -P 0 1 To

where o
P = Bo:Vp,, Y5,

Let’s define the state matrices in the transformed system as

Aogg  Aogs  Aogs I 00 Aogg  Aogy  Aogz 1 00
Aogg Aogg Aoga | =| O I O || Aggy Agzg Aoge [ | O 1 0
Aozg Aojf; Aozz —P 0 1 Aoz AOQ_.!-7 Aozz P 0 I
2Bo,, 0 Lo I 00 f:Boy 0 Log
0 0 Lg|=| 0 Io0 0 0 Ly
0 Boz Loz -P 0 I BOa:VBoy BOzVBoy Loz
and
i . ) . I 00
[o Co 0]=[Co &y 0] 0 I 0
P 0 I
where [é’o, é’o] = CoUp, -
The resulting system is given by
( ?20 Aogg  Aggs  Aogz Yo “Bw O Loy [1io
Yo| = |Aogs Aogg Aoz | [%|+| O O Log| |t
! L2o ozg Aoz {1055 Zo 0 Bz Lozl L ¥ (C.29)
- Yo
Yy = [Ch Co 0] [@o}
\ Zo
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Next, we identify in the state equation for §j, those outputs that have direct influence from
Zo. The output vector §, is then partitioned accordingly into o and fo. The partition is
done based on the rank of Aoﬁa:- Similar to previous matrix decompositions, we perform
the singular value decomposition on the matrix Agg;z,

AD&:‘: = UOAy:r:EOAyxVOT,:ig:z
B [S Aoss 0 (C.30)
- 0 0

where Uy 455 and Vy45; are orthogonal matrices. Let’s define the following state transfor-
mation

[”3"] = V5220 (C.31)

and the following output transformation
Yo| _ ;T =
[go] = UOAQ:/:EyO (032)
The output state equation for § is now partionned into the following output state equations

:,:70 = Aoggfo + AOyyyo + Aogglio + 23OA 2%o + Logf (C.33)
Yo = Aoggho + Aogglo + Aogglo + Log

where ¥ Agz 15 a square and invertible submatrix of X432

By ta,kmg derivatives of the g states, the algorithm converts system states Zg into output
states. This technique will be repeated on subsequent steps until the overlap indicated by
the matrix Akgi is zero at some k" iteration.

Note that if there is no direct feedthrough term Loy in the §j; state equation, then one
can simply take its derivative as follows,

Jo = Aoggllo + Aogglio + Aogglio + Sozao (C.39)

thereby creating jio as a new set of output states replacing Zo. Of course, we need to
substitute 7q, ¥y, and Zo from equations (C.29) and (C.33) in the above equation. The
term 7, is not substituted out because it is no longer part of the state equations—this
equation is used to replace Zo states with 7, states.

However, if the direct feedthrough term Loy is not zero, then the term Log:r,"/ would be
present in the equation for j, in equation (C.34). It is impossible to create § since this
term would include a time derivative of the control term #%. However, instead of creating
the states 7y, one would consider a new output

o = Yo~ Logh_ _ . (C.35)
= Aogplo + Aogglio + Aogglo + Lo a5zT0

Differentiating the above equation we have
Jo = Aogglo + Aoggio + Aozl + Loazato (C.36)
Note that we have a new output state equation from the above definition of

Yo = Yo + Logl (C.37)
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and equation (C.36) becomes
Yo = Aogglio + Aogy [flo + Loghll + Aol + LoagaTo (C.38)

Substituting the appropriate equations for ﬁo, jjo and 7 into equation (C.38), we obtain

Yo = Aogg (o + Logyl
+ Aogy [Aogglio + Aogglio + Aoggfio + AogsFo + AogzFo + Sy, tlo + Logf
+ Aogg [Aoggfo + Aoggo + Aogglo + Log]
+ Saoge [Aozglo + Asglo + Agzglio + Agzzdo + AgzzFo + Bosilo + Lozl
After simplification, we have
Jo = Aogylio + Aggglio + Aoggiio + Aogglio + Aogafo + AogzZo + Bogilo + Bogiio + Loz (C-39)

Using equation (C.35), we can solve for Zg in terms of g, o, %o, Jo and §. Namely,

~

Zo = %3 4= [fo + Loy — Aoggo — AoggFo — Aogzio] (C.40)
With equation (C.40), one can eliminate the dependency on Zo from all the above state
equations. The resulting system state model has the following form

r A

Yo Aogg  Aogg  Aogy  Aogy  Aogz ] [ o By, 0 Ly
i 0o 0 0 I 0 ||g 0 0 Log| [do
Yo| = |Aogg Aogg Aoz 0 O fol+] 0 O Lo [ﬁojl
Yo Aoy Aogg Aogs Aoz Aoz | | Yo oy Bog Loy | Ly
] Lo Agzg Aozg Aoz Aozy Aozzl LTo 0 Boz Loz
Yo
L Yo
Y = [Co C() Co 0 0] :ljo
Yo
\ Zo
(C.41)

Let’s apply the following state transformation to eliminate the term Bog in the input matrix
associated with the input g,

p,, 0 Log I 000 0][Er, O Lo
0 0 Lo 0 I 00O0|| 0 0 Loy
0 0 Lig| = [0 0T 00O 0 0 Ly
0 B():,j L()gj -P 0 0 I O (o] ~0§ LO@?
0 By Lo 0 0001 0 By L (C.42)
Xp, 0 Log ’
0 0 Loy
= Tp| 0 0 Lo
Boy  Boy Loy
0 0% Loz
where A o
P = By,
By; = By (C.43)
LOﬁ = —PLQQ—{- Log



Applying the same transformation Tp to the system and output matrices, we obtain

Aoy Aogg Aogs Aggy Aogs Aogg Aogg Aogg Acgy Aoy
0 0 0 I 0 0o 0 0 I 0
Aogg Aogg Aoz 0 0 | = Tp'|Aogy Aoy Ay O O [Tp
Aogg Aogg Aojg Aois Aoia Aogy  Aogg  Aogg Aogy  Aogz
AO:Q AOE;? AOE:J Ao:’:i; A0=i Aozg Aozg Aozg Aozy Aoz
[éo Co éo 0 0] = [éo Co éo 0 O]Tp
(C.44)
The new system is of the form
( [¥o Aoy Aogg Aogs Aogy Aogs] [ o By 0 Lo
Jo 0 0 0 I 0 || 0 0 Lol [
Yo| = |Aogg Aogg Aogg 0 O gol+| 0 0 Lo [ﬁo]
Yo Aoy Aojy Aoy Aogy Aozz | | o 0 Boy Lo | Ly
< Zo Aozg 50 Aozg 55 Awzzl LZo 0 oz Loz
fo
.. Yo
y = [C Co Co 0 0]|4o
Yo
( Zo
(C.45)

The next iteration can be carried out in a similar fashion for the subsystem corresponding to
the system states g, and Zo. For convenience, we re-define them as 3; and z; respectively,

= :0
{ 21 = 30 (C.46)
and letting the inputs §; and u; be
y
g= |9 (C.47)
Yo
Yo
u; = fp (C.48)

At the iteration k = 1, the system now has the familiar form of equation (C.21) correspond-
ing to the case k =0,

gl — Alyy Alya::| [yl] {Bly] |:Lly:| ~ C.49

[(i,'1:| [Al:z:y Al:z::z: | + Bl:r ¥ le 0 ( ' )

For the above system, we apply the same procedure as developed for the case of k = 0. The
SCB algorithm continues until the term A;; is equal to zero. At the last kth-iteration, the

subsystem will be of the following form
i Argy  Argy Argz] [ B, 0 Lig] [t
Ye | = | Arig Ag O Ge|+| 0 0 Lig| |k (C.50)
7 Tk 0  Bikz Liz] LUk

Tk Akzg  Akzg  Akzz
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In the above recursive algorithm, the system states will have the following components

Zsch =

We note the following useful relations

dim(g;) =

dim(gj-1) =

for0<j <k

(C.51)

dim(ﬁj)

U (C.52)
dimn( [171 } )

Uj

Finally, we can partition x5 further into the set of yy, ys, zc and z, states defined as

follows,

Ys =

The number of infinite zeros of order j is equal to

0<j<k.

Yb

o
Yo
i
n
¥
Y

T |
the dimension of the vector §; (or ;) for

o |
i

Vi

(C.53)

(C.54)

Yk

The system structure associated with the state equations for ; has no direct input terms
from 4;, i, and z; for 0 < j < k. Hence, the presence of any of these states would indicate

that the overall system is not right-invertible.
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If the term By at the last iteration is nonzero, then the set of inputs i exists and the
system will not be left-invertible. In this case, one can further partition the states Zx into
T, and z. states where z. belongs to the controllable subspace of . Namely,

e Ace Aa] [2Ze 0 B, L. |%
-l Il % fs] e

Eigenvalues of the matrix A,, corresponding to the uncontrollable subsystem z, are simply
the system invariant zeros.
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Appendix D

Robust Gradient Routines

t '
e FORTRAN subroutine for computing: X = / ef'P* Cov0 efP*3ds
0

¢ INPUTS:

Nsysord is the order of the system matrix

N2sysord is the row dimension of Cov0, usually = Nsysord
Fp, the system matrix

Cov0, the base matrix within the integral (see above formula)
work, an double-precision valued work array

iwork, an integer valued work array

tf, the final time

¢ QUTPUTS:
X matrix
o SUBROUTINE CALLS:

abx matrix multiplication

abtx matrix multiplication of one matrix and the transpose of another
atbx matrix multiplication of the transpose of a matrix and another
abte transpose of a matrix

Isolve solves a system of equations, often used to compute matrix inverses

'PAGEZ_Q{; FTENTIONALLY BLARK
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e FORTRAN subroutine for computing

t v , ;
M= / / eFP =) CtQC eFP** x Gamp * Gamp' + eFP* ds dy
o Jo

o INPUTS:

Nsysord is the order of the system matrix

N2sysord is the row dimension of CtQC, usually equal to Nsysord

Nnoises is the column dimension of Gamp, or the number of independent noises
Fp, the system matrix

CtQC, the base matrix within the integral (see above formula)

Gamp, the secondary base matrix within the integral (see above formula)
work, a double-precision valued work array

iwork, an integer valued work array

tf, the final time

e OUTPUTS:
DCost, the M matrix
e SUBROUTINE CALLS:

abx matrix multiplication

abtx multiplication of one matrix and the transpose of another

atbx multiplication of the transpose of one matrix and another

abte transpose of a matrix

Isolve solves a system of equations, often used to compute matrix inverses

PadExp is the Padé matrix exponentiation routine (without squaring or scaling)
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e FORTRAN function for matrix exponential Padé series specialized to this case of
function evaluation—where the matrix has a known structure

Fp CtQC 0 Qn Rn Yn
exp 0 —Fp efPCov0 |dT ;=] 0 Sn Un
0 0 Fp 0 0 Q@n

e INPUTS:

Nsysord is the order of the system matrix

N2sysord is the row dimension of CtQC, usually equal to Nsysord
serlen is the length of Padé series desired

iwork, an integer valued work array

dT, the final time (usually a small increment here)

Fp, the system matrix

CtQC, a base matrix within the M integral

Cov0, a base matrix within the M integral

Qn,Rn,Sn,Un,Yn are all numerator summands for exponential series of a matrix 3
times the dimension of Fp (5 submatrices, not 9, because some terms are 0 and
others are repeated)

Qd,Rd,Sd,Ud,Yd are all denominator subblocks of the exponential series. These
are nominally work arrays

work1,work?2 are temporary storage work matrices (same size as Fp)

work, a double-precision valued work array
e QUTPUTS:

Yn is the M matrix for small scaling time. It is part of the matrix exponential
Rn, a part of the overall matrix exponential ([1,2] partition above)
Un, a part of the overall matrix exponential ([2,3] partition above)

Sn, the exponential of the -Fp matrix and part of the overall matrix exponential
above

Qn, the exponential of the Fp’ matrix and part of the overall matrix exponential
above

e SUBROUTINE CALLS:

abx matrix multiplication

abtx multiplication of one matrix and the transpose of another
atbx multiplication of the transpose of a matrix and another
abte transpose of a matrix

Isolve solves a system of equations, often used to compute matrix inverses
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e TESTINTG is a program for testing the intgl2 subroutine. This test is by way of com-
parison with the “diagonal” method for a series of test cases, both with diagonalizable
and non-diagonalizable matrices

¢ INPUTS:

Test inputs are a series of system matrices put in the program via FORTRAN DATA
statements (they are basically internal to the program)

e QOUTPUTS:

Test results that list the input matrices and the results of the computations for both
the diagonal and robust routines are displayed directly to the screen

e SUBROUTINE CALLS:

testin is the actual subroutine that does the tests, but it is part of the same source
file, so it is not all that separate

eigenv does an eigenvalue-eigenvector decomposition of the system matrix

abe assigns one matrix to another

Isolve solves systems of equations, in this case it is used to find a matrix inverse
fexp is a specialized scalar exponentiation routine particular to SANDY

aatx multiplies a matrix by its transpose

abx multiplies two matrices

abtx multiplies one matrix by the transpose of another

intglx is the original “diagonal” means of calculating X

prntm prints a matrix out to the screen with a banner and label

intgl2 is the “robust” subroutine for computing X

142



DS  COM e .. et

TESTCONE is a program for testing the conex2 subroutine. This test is by way of
comparison with the “diagonal” method for a series of test cases, both with diagonal-
izable and non-diagonalizable matrices

INPUTS:

Test inputs are a series of system matrices put in the program via FORTRAN DATA
statements (they are basically internal to the program) These tests are the same
as for the program testintg

Test results that list the input matrices and the results of the computations for both
the diagonal and robust routines are displayed directly to the screen

SUBROUTINE CALLS:

tstrun is the actual subroutine that does the tests, but it is part of the same source
file, so it is not all that separate

eigenv does an eigenvalue-eigenvector decomposition of the system matrix
abe assigns one matrix to another

Isolve solves systems of equations, in this case it is used to find a matrix inverse
fexp is a specialized scalar exponentiation routine particular to SANDY
aatx multiplies a matrix by its transpose

abx multiplies two matrices

abtx multiplies one matrix by the transpose of another

atbx multiplies the transpose of one matrix by the other

conexp is the original “diagonal” means of calculating M

prntm prints a matrix out to the screen with a banner and label

conex2 is the “robust” subroutine for computing M

intgl2 is the “robust” subroutine for computing X’
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Appendix E

General Utility Routines for
Synthesis and Analysis

PSEUAOIINL L.ttt e

¢ Tinv = pseudoi(T);
MATLAB function for computing pseudo—inverse of T via the Singular Value Decom-
position. An inverse of T is guaranteed in the sense that Tinv*T = I’, where I’ will
have either 1’s or 0’s along the diagonal, and 0’s everywhere else. The number of 1’s
is equal to the rank of T

o INPUTS:
T is the input matrix
e OUTPUTS:

Tinv is the pseudo-inverse

rmodalInl .o
e [T,D} = rmodal(A); MATLAB routine for real eigenvalue/eigenvectors
¢ INPUTS:
A matrix to be decomposed
e OUTPUTS:

T real transformation matrix

D “Diagonalized” matrix of real eigenvalues and 2x2 o—w blocks
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Dalr Al ITL .o

¢ [Abal,Bbal,Cbal, HSV,T] = balreal2(A,B,C);
Robust form for balanced realization: algorithm works even when the system contains
uncontrollable/unobservable modes

¢ INPUTS:
A,B,C, System dynamics, input distribution, and output distribution matrices
e OUTPUTS:

Abal,Bbal,Cbal Balanced state matrices
HSV are the Hankel singular values

T is the transformation matrix for balanced realization

gaINIOCI.IN ..o

e [zeroid] = gainloci(A,B,C,D,K output,input,gains);
MATLAB routine to compute closed loop eigenvalues for field of gains (negative feed-
back only). Normally used in single loop gain margin computation

o INPUTS:

A,B,C,D System matrices

K Nominal feedback gain (scale factor) for loop to be evaluated
output is the index of the output for the loop to be fed back
input is the index of the input of the loop fed back

gains is the field of gains, relative to K
e QUTPUTS:

zeroid is the closed loop eigenvalue series corresponding to the gain field
Gain margin in both magnitude and db
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PhASIOCIIN ..t

e [zeroid] = phasloci(A,B,C,D K output,input,phases); MATLAB routine to compute
closed loop eigenvalues for a set of phase values (deg), negative feedback only. Nor-
mally used in single-loop gain margin computation

o INPUTS:

A,B,C,D System matrices

K Nominal feedback gain (scale factor) for loop to be evaluated
output is the index of the output for the loop to be fed back
input is the index of the input of the loop fed back

phases is the set of phases (deg)

o OUTPUTS:

zeroid is a series of closed-loop eigenvalues corresponding to the given set of phases

Phase margin in degrees

001 {4 10170 o'

e [K,S] = lgrcross(A,B,C,D,Q,R);
MATLAB routine to compute state feedback gains and Riccati solution by direct
eigenvalue/eigenvector partitioning

o INPUTS:

A,B,C,D System matrices, with control input u in, criterion output z
Q Criterion weighting matrix

R Control weighting matrix
e OUTPUTS:
K State feedback matrix

S Riccati solution
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INAKIEIC I oot e

e [Acl,Bcl,Cel,Dcl] = maklticl(A,B,C,D,Bi,Di,Ac,Bc,Cc,Dc)
Creates Linear Time Invariant time domain closed loop system matrices from plant
(A,B,C,D,Bi,Di) and controller (Ac,Bc,Cc,Dc) matrices. The plant has both a control
input u and a command input Uc:

dz
dt
y = Cxx+Dxu+DixUc

= Axz+ Bxu+ BixUc(often B=Bi, but not always)

Assuming NEGATIVE feedback from the controller, this routine uses the following

equations:
Al — [ A— B(I+ Dcx D) 'DexC —B(I + De* D)~'Cc
- Be(I + D+ De)~1C Ac— Be(I + D* Dc)"'D+Cc
Bl — [ Bi — B(I + De* D)~'Dc * Di
- Be(I + D+ Dc)™'D
Cel - [ (J+DxDe)"'C —(I+DxDc)"'DxCe
~ | I+ DcxD)"'DexC  —(I+ Dex D)~'Cec
Del — [ (I+DxDc)"'Di
~ | =(I+ Dcx* D)™ D¢« Di

If either (I + D * Dc) or (I + Dc* D) are non-invertible, the solution is beyond the
scope of this subroutine

o INPUTS:

A,B,C,D,Bi,Di are the plant matrices, with Bi and Di being the command input
distribution matrices

Ac,Bc,Cc,Dc are the controller matrices
e OUTPUTS:

Acl,Bcl,Ccl,Dcl are the closed-loop output matrices. The columns of Bel and Decl
correspond to the command input U..
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SANAY 2.@X@ ..ttt ittt e e e

e Executable program for controller design via optimization. This form of SANDY uti-
lizes both diagonal and robust forms of the gradient computation algorithm. Switches
between algorithms according to the condition number of the eigenvector matrix de-
rived from the system dynamics matrix.

o INPUTS:

Data file for describing the plant, controller design parameters, and current con-
troller setup.

o OUTPUTS:

Log file for the optimization run, reports how well the optimization did and many
characteristics of the final closed loop system.
SANDY formatted file for describing current controller

MATLAB formatted file for describing current controller

WCSANAY.EXE@ . ...ttt ittt et e PR

e Executable program for controller design via optimization. This form of SANDY
utilizes the diagonal form of the gradient computation algorithm. This program also
uses the variant “worst—case” cost function approach.

¢ INPUTS:

Data file for describing the plant, controller design parameters, and current con-
troller setup.

e OUTPUTS:

Log file for the optimization run, reports how well the optimization did and many
characteristics of the final closed loop system.
SANDY formatted file for describing current controller

MATLAB formatted file for describing current controller
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Appendix F

UH-60 Rotocraft Design Files
(Chapter 7)

UhB0comMA. M ... e
o MATLAB script file for generating and plotting command responses
e INPUTS: (no formal argument list-items named actually used)

Acl Nomenclature for dynamics matrix
Bcemd Command input distribution matrix

Ceval Output distribution matrix—assume the outputs are in the order: p, g, r, u,
v, w, ¢7 67 50) 65: 50: and 6TR‘

Dcmd Command to output direct distribution
icmd Selects appropriate column of Bemd

U2 Command input profile

T2 Time base

e OUTPUTS:

Y, the generated responses from the MATLAB function lsim. The plots of p, g, r,
u, v, w, ¢, 8, by, bs, 6c, and érg are in 3 sets of panels.

Plots of command responses.

makideaO0.m (makideal.m) ........ ..o i e

o MATLAB script file to fabricate the ideal response model in the system matrices:
Aideal, Bideal, Cideal, and Dideal.

¢ OUTPUTS:

Aideal,Bideal,Cideal,Dideal are the literal matrices (namewise) created—no argu-
ment list for input or output. 11th order system.

paGe 157 INTENTIONALLY BLANK
PRECEDING FAGE BLANK NOT FILMED
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ad2delay.m ... e e e

¢ [Ad,Bd,Cd,Dd] = ad2delay(A,B,C,D,Tdelay);
MATLAB function to add 4 first-order actuator delays to the system model.

e INPUTS:

A,B,C,D is the system model, assumed with 7 inputs.
Tdelay is the delay time, in seconds.

e OUTPUTS:
Ad,Bd,Cd,Dd is the delayed actuator output system.

adodelay.m ... e e

¢ [Ad,Bd,Cd,Dd] = adodelay(A,B,C,D,Tdelay);
MATLAB function to add 12 first order sensor delays to the system model.

e INPUTS:

A,B,C,D is the system model, assumed with 31 states and either 12 or more sensor
outputs.

Tdelay is the delay time, in seconds.
e OUTPUTS:
Ad,Bd,Cd,Dd is the delayed sensor output system.
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fabsylq0.m (fabsylql.m) ...

e MATLAB script file for design of state feedback for the hover (forward flight) flight
condition. Used in Luenberger Observer design; includes delayed outputs to integra-
tors.

¢ INPUTS:

f01_g2r2.mat (f15_g2r2.mat) UH-60 state model linearized from nonlinear simu-
lation program output. Flight condition point: 1 knot forward velocity (15 knots
forward velocity) . Additional environmental parameters associated with this
flight condition: air density 0.002377 slug/cubic foot; rotor speed 27 rad/s; and
gross weight 16,800 Ibs.

Q and R weights are internal to the file, nonetheless they are nominal “inputs”.
o OUTPUTS:

State feedback matrix K in file: kmatalt0.mat (kmataltl.mat).
Plots of command responses for closed loop design

e CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.
ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

Igrcross.m solves for state feedback gains via partitioning the Hamiltonian matrix.

uh60comd.m to generate the plots of the command responses
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fabuhlq0.m (fabuhlgl.m) ...

e MATLARB script file for design of state feedback for the hover (forward flight) flight
condition. Used as baseline state feedback design for comparison to output feedback
designs.

¢ INPUTS:

f01_g2r2.mat (f15—g2r2.mat) UH-60 state model linearized from nonlinear simu-
lation program output. Flight condition point: 1 knot forward velocity (15 knots
forward velocity) . Additional environmental parameters associated with this
flight condition: air density 0.002377 slug/cubic foot; rotor speed 27 rad/s; and
gross weight 16,800 Ibs.

Q and R weights are internal to the file, nonetheless they are nominal “inputs”.
These are the same as those of fabsylg0 (fabsylg1).

o OUTPUTS:

State feedback matrix K in file: kmat0.mat (kmatl.mat).
Plots of command responses for closed loop design

e CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.
ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

Igrcross.m solves for state feedback gains via partitioning the Hamiltonian matrix.
uh60comd.m to generate the plots of the command responses

evalsysO.m (evalsysl.m) ...........ooiiiiiiiiiiiiiiiii i,

e MATLAB script file for generating system matrices used in the ADS-33C evaluation
file evalhovr.m (evalford.m).

e INPUTS:

f01_g2r2.mat (f15_g2r2.mat) UH-60 state model linearized from nonlinear sim-
ulation program output.

K, the state feedback matrix from the file kmatalt0.mat (kmatalt1.mat).
e OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, %, ¢, 6, ¥, z, y, 2.
Bgust, Dgust with inputs in the principal gust directions

Bemd, Demd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: &, és, é¢c, and érg.
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fabsylo0.m (fabsylol.m) ..o

e This MATLAB script file does a Luenberger Observer output feedback controller
design via CLTR.

o INPUTS:

f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.
kmatalt0.mat (kmataltl.mat) is the file containing the K matrix from the state
feedback solution.
o OUTPUTS:

Luenberger Observer dynamics matrices: [Ale,Ble,Cle,Glc,Plc].
fabsylo0.mat (fabsylol.mat) is the file containing these matrices.
Plots of responses.

e CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.
ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

scb.m computes the Special Coordinate Basis (SCB) for the given dynamics.
Igrcross.m solves for state feedback gains via partitioning the Hamiltonian matrix.

uh60comd.m is a script file for plotting the responses to an input.

fabrolo0.m (fabrolol.m) ...

e MATLAB script file for robust analysis of Luenberger Observer-based controller gen-
erated in fabsylo0 (fabsylol).

¢ INPUTS:

fabsylo0.mat (fabsylol.mat) , the data files containing the Luenberger Observer—
based controller.

o OUTPUTS:

Multiloop actuator phase/gain margins
Single Loop actuator phase and gain margins

Single Loop sensor phase and gain margins
e CALLS TO:

gainloci computes gain margins for single loop.
phasloci computes phase margins for single loop.
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evalosy0.m (evalosyl.m) .........ooviiiiiiiiiiiiii e

e MATLAB script file to generate system dynamics matrices from Luenberger Observer—
based controller for use in evalhovr.m (evalford.m).

e INPUTS:

fabsylo0.mat (fabsylol.mat) the source data on the Luenberger Observer-based
controller.

e OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, 2, ¢, 6, ¢, 2, y, 2.
Bgust, Dgust with inputs in the principal gust directions

Bemd, Demd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: &, s, éc, and érg.

fabsyro0.m (fabsyrol.m) ..........oo i

o MATLARB script file to take the balanced realization of a Luenberger Observer—based
controller and look at its command responses. Internal straps allow 10th, 14th, or
25th order controller.

e INPUTS:

balrdlo0.mat (balrdlol.mat) is the data file containing the balanced realization
of the Luenberger system [Ale,Ble,Cle,Gle,Ple]
f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.
e OQUTPUTS:
Plots of responses.

e CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.
ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

scb.m computes the Special Coordinate Basis (SCB) for the given dynamics.
uh60comd.m is a script file for plotting the responses to an input.

156



fabroro0.m (fabrorol.m) ....... ...

e MATLAB script file to perform robust analysis of reduced order Luenberger-based
controller. Internal straps allow 25th or 14th order.

s INPUTS:
balrdlo0.mat (balrdlol.mat) , the data files containing the balanced Luenberger
Observer—based controller.
fabsylo0.mat (fabsylol.mat) , the data files containing the Luenberger Observer—
based controller.

o OUTPUTS:

Multiloop actuator phase/gain margins
Single Loop actuator phase and gain margins

Single Loop sensor phase and gain margins

o CALLS TOQ:

gainloci computes gain margins for single loop.

phasloci computes phase margins for single loop.

evalros0.m (evalrosl.m) ..ottt

e MATLAB script file to generate system dynamics matrices from a balanced and
reduced Luenberger Observer-based controller for use in evalhovr.m (evalford.m).
Straps for setting the reduction at 6th, 14th, and 25th order are available.

e INPUTS:
fabsylo0.mat (fabsylol.mat) the source data on the Luenberger Observer-based

controller.

balrdlo0.mat (balrdlol.mat) the source data for a balanced Luenberger Observer-
based controller.

sanltre0o.m (sanltrelo.m) the source files for the 7th order reduced feedforward.

e OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, 2, ¢, 8, ¥, z, y, 2.
Bgust, Dgust with inputs in the principal gust directions

Bemd, Demd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: &, és, é¢c, and é7r.
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sanltrf0.m (sanltrfl.m) ... ... ..o i i

e MATLAB script file to assemble reference system dynamics and controller (based on
a 14th order observer based on a reduced Luenberger observer) set-up for SANDY
run. This SANDY run is to minimize the white noise response error (includes shaped
white noise) between the full-order Luenberger observer-based design and the lower
order controller.

o INPUTS:
balrdlo0.mat (balrdlol.mat) is the data file containing the balanced realization
of the Luenberger system [Ale,Ble,Cle,Gle,Ple]

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.

makidea0.m (makideal.m) is the script file that produces the ideal closed-loop
system response dynamics [Aideal,Bideal,Cideal,Dideal|.
¢ OUTPUTS:

Plots of the closed-loop response using the reference controller for verification.

Plots of the closed-loop response using the initial guess of the reduced controller for
verification.

sanltrf0.mat (sanltrfl.mat) Reference and controller matrices in the plant—controller
format acceptable to SANDY. The SANDY input file sanltrf0.dat (sanltrfl.dat)
was eventually produced from this.

o CALLS TO:

rmodal.m real-valued eigenvalues and eigenvectors—complex eigenvalues show up as
2x2 blocks.

uh60comd.m is a script file for plotting the responses to an input.

158



sanltrhO.m (sanltrhl.m) ...

o MATLAB script file to assemble a reference system based on state feedback on the
UH-60 as well as open loop UH-60 dynamics. The open-loop dynamics of the refer-
ence will be closed by an initial controller guess and the recovery error defined by the
difference in response between the state—feedback based system and the 14th order
observer-based controller stabilized system given the same disturbance inputs.

o INPUTS:
sanltrf0.m (sanltrfl.m) is the data file containing the initial controller guess (from
the model matching run).

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.

kmatalt0.mat (kmataltl.mat) is the file containing the K matrix from the state
feedback solution.

f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.
e OUTPUTS:

Plots of the closed-loop response using the reference controller for verification.

Plots of the closed-loop response using the initial guess of the reduced controller for
verification.

sanltrh0.mat (sanltrhl.mat) Reference and controller matrices in the plant—controller
format acceptable to SANDY. The SANDY input file sanltrh0.dat (sanltrhl.dat)
was eventually produced from this.

o CALLS TO:

rmodal.m real-valued eigenvalues and eigenvectors—complex eigenvalues show up as
2x2 blocks.

uh60comd.m is a script file for plotting the responses to an input.

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.
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fabrolr0.m (fabrolrl.m) ...... ...

e MATLAB script file to perform robust analysis of a recovered 14th order controller
originally reduced from the Luenberger Observer design. Also strapped for possible
use of the numerical CLTR design.

o INPUTS:
f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.

sanltrfOn.m (sanltrfln.m) which contain the recovered and reduced 14th order
controller component (sanltrhOn.m and sanltrhln.m are used given a strap set-

ting).
sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.
e OUTPUTS:

Multiloop actuator phase/gain margins
Single Loop actuator phase and gain margins
Single Loop sensor phase and gain margins

e CALLS TO:

ad2delay.m adds 4 actuator delays to the system model.
adodelay.m adds 12 sensor delays to the system model.
gainloci.m computes gain margins for single loop.

phasloci.m computes phase margins for single loop.
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evaltrfO.m (evaltrfl.m) ... i

e MATLAB script file to generate system dynamics matrices from a balanced reduced
and recovered 14th order controller based on the Luenberger Observer-based con-
troller. Output for use in evalhovr.m (evalford.m). Does some response plotting to
verify that a proper assembly of a closed-loop system has been made.

o INPUTS:
f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.

sanltrf0n.m (sanltrfln.m) which contain the recovered and reduced 14th order
controller component.

sanltrefo.m (snaltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.
» OUTPUTS:

Aeval, Ceval with outputs: p, ¢, 7, u, v, 2, ¢, 0, ¥, x, y, 2.
Bgust, Dgust with inputs in the principal gust directions

Bemd, Demd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: &, s, éc, and é7g.
uh60comd.m is a script file for plotting the responses to an input.
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evaltrhO.m (evaltrhl.m) ...... ... .. e

e MATLAB script file to generate system dynamics matrices from a balanced reduced
and CLTR recovered 14th order controller based on the Luenberger Observer-based
controller. Output for use in evalhovr.m (evalford.m). Does some response plotting
to verify that a proper assembly of a closed-loop system has been made.

o INPUTS:
f0l1_g2r2.mat (f15—g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

sanltrhOn.m (sanltrhln.m) which contain the recovered and reduced 14th order
controller component.

sanltre0o.m (snaltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.
e OUTPUTS:

Aeval, Ceval with outputs: p, ¢, r, u, v, 2, ¢, 6, ¥, z, y, 2.
Bgust, Dgust with inputs in the principal gust directions

Bemd, Demd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: éo, s, éc, and é7g.

uh60comd.m is a script file for plotting the responses to an input.
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sanl4do0.m (sanl4dol.m) ..........coiiiiiiiiiiiiiiiiiiiii i

e MATLAB script file to assemble plant and controller matrices for a direct optimization
run. The controller form is the same as for the recovery cases: 14th order Luenberger
observer with integral control and 7th order feedforward dynamics.

o INPUTS:
sanltrf0.m (sanltrfl.m) is the data file containing the initial controller guess (from
the model matching run).

sanltref0o.m (sanltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.

f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.
e OUTPUTS:
Plots of the closed-loop response using the initial guess of the controller for verifica-
tion.

sanl4do0.mat (sanl4dol.mat) Reference and controller matrices in the plant—
controller format acceptable to SANDY. The SANDY input file san14do0.dat
(sanl4dol.dat) was eventually produced from this.

e CALLS TO:

uh60comd.m is a script file for plotting the responses to an input.
ad2delay.m adds 4 actuator delays to the system model.
adodelay.m adds 12 sensor delays to the system model.
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fabrodo0.m (fabrodol.m) ........ .. ...

e MATLAB script file to perform robust analysis of a 14th order controller produced
by direct optimization.

e INPUTS:
f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.

sanl4doOn.m (sanl4doln.m) which contain the optimized 14th order controller
component.

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.
e QUTPUTS:

Multiloop actuator phase/gain margins
Single Loop actuator phase and gain margins
Single Loop sensor phase and gain margins

o CALLS TO:

ad2delay.m adds 4 actuator delays to the system model.
adodelay.m adds 12 sensor delays to the system model.
gainloci.m computes gain margins for single loop.

phasloci.m computes phase margins for single loop.
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eval4do0.m (evalddol.m) .........coviviiiniiiiiiiii i,

e MATLAB script file to generate system dynamics matrices from a direct optimized
14th order controller based on the Luenberger Observer-based controller. Output for
use in evalhovr.m (evalford.m). Does some response plotting to verify that a proper
assembly of a closed-loop system has been made.

e INPUTS:
f01-g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

sanl4do0On.m (sanl4doln.m) which contain the recovered and reduced 14th order
controller component.

sanltre0o.m (snaltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.

e QUTPUTS:

Aeval, Ceval with outputs: p, q, 7, u, v, 2, ¢, 0, ¥, z, y, 2.
Bgust, Dgust with inputs in the principal gust directions

Bemd, Demd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: &, és, éc, and érg.
uh60comd.m is a script file for plotting the responses to an input.
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evalhovr.m (evalford.m) .......... ...

e MATLAB script file for evaluating system matrices for the ADS-33C hover (forward
flight) requirements.

¢ INPUTS:
Output from appropriate evaluation setup m-file (these files start with the word

“eval”).

Test parameters contained within the evaluation file
e OUTPUTS:
Test evaluations for many of the ADS-33C requirements

e SUPPORT ROUTINES: Because the number of routines used in these files is large
and they are specific to them, they are listed here. Details of each will follow this list.

bandwdth determines bandwidth from system matrices in a manner similar to, yet
unlike classical methods.

peakmmax evaluates transient and steady-state behavior of output trace (Y).

passit evaluates a point to see if it is to the right of a given curve.

getlstor does an optimization of a given curve trace to a first order response by
adjusting the magnitude, delay and time constant.

getlstda returns the RMS error between a given curve trace and a trial first order
fit.

pulshold checks compliance to ADS-33C 3.2.6 by analyzing response to an actuator
pulse (hover only).

fig5_3—4 does a test based on whether a criterion (either bank angle oscillations (Fig
5 of ADS-33C), sideslip excursion (Fig 6 of ADS-33C), or a sort of scaled sideslip
excursion (Fig 7 of ADS-33C) is acceptable.

fig9_3_4 checks damping ratio and stability criteria given a sigma-omega pair.
text934 Reports in text the results from the evaluation done in figd_3_4.
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bandwdt . ...

e [W180,Wgain,Wphase,Tphase] = bandwdth(Acl,Bcmd,Cemd,Demd, dispflag)
MATLAB function to determine bandwidth compatible with definition in mil stan-
dard ADS-33C, Figure 2(3.3). This function requires the closed-loop system matrix,
the relevant command input, and the relevant controlled output (only 1 each). A
Bode plot of the system gain and phase of X/Xcmd is made. The frequency at the
phase=180 point is found. Wphase is the frequency at a margin of 45 deg. from that.
Wgain is the frequency 6dB higher than the magnitude at W180.

o INPUTS:

Acl,Bcmd,Cemd,Demd  are the system matrices for bandwidth determination. The
loop is closed, and only one input, one output.

dispflag controls verifying the results with a plot the user can see with the 180
frequency and the phase and gain frequencies marked.

e OUTPUTS:

W180 is the frequency at which the phase is 180 degrees
Wgain is the frequency at which the magnitude is 6db up from that at W180.
Whphase is the frequency at which the phase is 135 degrees

Tphase is known as the phase delay, which is the slope of the phase curve between
WI180 and the frequency where the phase lags an additional 180 degrees.

PeAKIMIMAX.ITL ..ottt i i e e e e

¢ [Ymax,Tmax,Ymin,Tmin,Ymax2,Tmax2,Yavg|] = peakmmax(Ytrace)
Evaluates transient and steady behavior of trace. Trace assumed to be step response
with analysis of overshoot and undershoot. Tries (presently without sophistication)
to estimate steady state value of the trace. With all of this, the standard functions
imax; and find; need alternate means. With all of this, this function does not ever
try to extrapolate to find Yavg, since that can get one into severe trouble. Tmax and
Tmin are indices into Ytrace where the respective max and min values are located.

o INPUTS:
Ytrace is the step response.
e OUTPUTS:

Ymax is the peak maximum.

Tmax is the index into Ytrace where the value is assumed.

Ymin is the first minimum after Ymax.

Tmin is the index into Ytrace where the value Ymin is assumed.
Ymax2 is the next local maximum after Ymin.

Tmax2 is the index into Ytrace where the value is Ymax2 assumed.
Yavg is the estimated steady-state value.
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¢ status = passit(curve,point)
This function tests to see if a point is to the right of the given curve. If so status is 1,
if not, status is 0. In curve and point, the x coordinate is first, then y. The curve is
assumed non-closed. Linear extrapolations are done before the begin point and after
the end points based on the segments there.

¢ INPUTS:

curve is a set of points defining a curve. This curve could be closed, but in general
it is assumed non-—closed.

point is the x,y coordinate of a point to be tested.
¢ OUTPUTS:

status is 1 if the point is to the right of the given curve, 0 if it is not.

pulshold.m ... _

e quepasa = pulshold(Ttrace,Ytrace)

Checks compliance with 3.2.6 of ADS-33C (Handling Qualities for Military Rotocraft).
Ytrace is a response to an actuator pulse. To pass (0 return), it is to rise, then fall
to less than 10peak value within 10 seconds (hence the time trace needed too). It is
to stay below this 10% for another 30 seconds. UCE=1 needs 10% settle within only
20 seconds, this is checked too if the original settle is not met. The return condition
will be -1 here. It is best to supply around 60 seconds of data (only 50 absolutely
necessary). Failure is a return condition of 1.

e INPUTS:

Ytrace is the response to an actuator pulse.

Ttrace is the corresponding time trace.
¢ OUTPUTS:

quepasa is set to 0 if the trace passes the requirement, 1 if it does not.
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o [Mag,Delay,Tconst,corrsq] = getlstor( Times, Ydata )
Does first order fit y(t+Delay) = Mag*(1-exp(t/Tconst)) to given data. Computes
a sort of chi-squared sense that indicates how well the fit actually behaved. This
procedure is presented in Figure 8(3.3) of ADS-33C. This routine calls the MATLAB
function nelder which will in turn call getfstda, which generates data for the opti-
mization routine. The common block: global ydata Tset Nset must be present in
the root m-file.

¢ INPUTS:

Ydata is the function trace.

Times is the corresponding time trace.
o OUTPUTS:
Mag is the magnitude of the first order function.
Delay is the time delay to the nominal zero point for this first-order function.

Tconst is the time constant.

corrsq is the ratio of the squares of the fitted curve and the raw data about the
mean.

getlstda.m .. ...

e error = getlstda( params )
Returns error from latest set of first order function parameter fit. Parameters are:
Mag, time delay, and time constant, in that order for the params vector The common
block: global ydata Tset Nset must be present in the root m-file.

o INPUTS:

params is a 3-element vector whose meanings are: Magnitude of first-order function,
time delay, and time constant.

e OUTPUTS:

error is the RMS error between the data and the fitting function.

A J
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e [x, iterats] = nelder(errorfn,parmlist,tol,prnt)
nelder is a nonlinear optimization function (the Nelder-Mead Simplex algorithm)
that tries to adjust the given parameter vector in order to minimize the output of the
argument function errorfn. This is often a library function within MATLAB, but not
always, hence its inclusion here.

o INPUTS:

errorfn is a user-defined function which uses the parmlist entry in the nelder com-
mand line to return the associated value of the cost function. The actual argu-
ment entry is the name of this function’s m-file (which should be the name of
the function as well).

parmlist is the parameter list (array). The actual meanings of the individual ele-
ments depends on your errorfn as nelder derives the relationships of the individual
terms to the cost.

tol is the stopping tolerance (defaults to 1.0e-3).

prnt will describe each step if set to a nonzero value (defaults to 0).
e OUTPUTS:

iterats is the number of iterations (this argument is optional).

x is the optimized parameter list (same length as input).

0t 300 T 05 s L

o [passit] = fig5-.3—4(RR2betaP,RollLag,PhOSCAV LineSpec)
Uses function passit to evaluate input criteria and outputs what level performance
they represent as per Figure 5(3.4) of the ADS-33C rotocraft handling specs. Also
evaluate as per Figure 6(3.4) and Figure 7(3.4) given different values of LineSpec (the
raw criterion data). Will detect whether one has one curve or two (4 cols versus 2).
For use in forward flight tests only.

s INPUTS:

RR2betaP is nominally the roll rate to sideslip phase angle.

RollLag is the component of an oscillation cycle needed to reach the first maximum
of an overshoot response in the lateral-directional oscillation.

PhOSCAV is either the roll oscillation envelope size or the sideslip oscillation peak
normalized by the roll oscillation peak.

LineSpec is the specific test characteristic line using these criteria.
e OUTPUTS:

passit is set to 1, 2, or 3, according to what criteria are met.
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e [result] = figd—3-4( sigma, omega )
returns 1 if meets the all MTE specs on sigma and omega according to Figure 9(3.4)
of ADS-33C, which examines known lateral-directional modes. Returns 2 for Level I
(all MTE but slalom, ground attack and air combat), Level II for these. Returns 3 for
Level III for slalom, ground attack, and air combat, Level II for all others, Returns 4
for Level IIT all around, and 5 for unstable. Used in forward flight analysis only.

¢ INPUTS:
sigma,omega are the real and complex parts of the eigenvalue under consideration.
o OUTPUTS:

result is a simple number from 1 to 5, according to the above description.

BEXE O34 I ..o e

o text934( result )
Displays appropriate text string according to number handed it. number same series
as in the figd—3_4 evaluation routine. Used in forward flight analysis only.

o INPUTS:
result is the result from the fig9_8_/ routine.
e OUTPUTS:

Text to screen to describe result.
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Appendix G

UH-60 Rotocraft Models
(Chapter 7)

f01_g2r2.mat (Hover)

e 31 state model linearized from nonlinear simulation program output

------------------------------------------------------------

P, ¢, 7 | Body axis attitude rates (deg/s)
u, v, w | Body axis velocities (ft/s)
0z, 8y, 8. | Euler angles (deg) from terrestrial to
rotocraft axes (pitch, roll, yaw)
z, Y, 2 | Inertial positions (ft)
Bo, Bp, | Rotor flapping rates (deg/s)
Bis, Bic
Co, {p, | Rotor lead—lag rates (deg/s)
Gs; Gic ,
Bo, Bp, | Rotor flapping angles (deg)
Pis, Bic,
o, ¢p, | Rotor lead-lag angles (deg)
Gis, Gic,
Mo, A15, | Inflow velocities (1/sec) These are normalized
Ae by the rotor radius (26.83ft)

Flight condition point: 1 knot forward velocity. Additional environmental parameters
associated with this flight condition: air density 0.002377 slug/cubic foot; rotor speed
27 rad/s; and gross weight 16,800 Ibs

Dynamics matrix F
Control and disturbance input distribution G
CONTROL INPUTS (deg): éo (collective), 85 (sine), 6¢ (cosine), and érp (tail rotor)

DISTURBANCE INPUTS (ft/s): Vg, Vgy, and V., gusts from the principal terres-
trial frame directions

. )
R
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f15_g2r2.mat (Forward Flight) ...,

o 31 state model linearized from nonlinear simulation program output

e Flight condition point: 15 knot forward velocity. Additional environmental parame-
ters associated with this flight condition: air density 0.002377 slug/cubic foot; rotor
speed 27 rad/s; and gross weight 16,800 1bs

e System dynamics matrix F
e Control and disturbance input distribution G

e All other details same as for hover model.
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Appendix H

JPL Large Space Structure Design
Files (Chapter 4)

| ST 0 = o 4 00 o o W

e MATLAB script file for running closed and open loop system dynamics through sta-
bility test. Runs stability test mentioned in Chapter 4, the structure is pulsed for 6.4
seconds, then allowed to free oscillate. Also gives eigenvalues of closed loop system.

¢ INPUTS:

Isclnew.mat is the data file for the open loop antenna structure.
Iscl4mb5c.m is the SANDY controller output file normally used. Its contents have
been copied into Isclisim.m.
e OUTPUTS:

Eigenvalues of the closed loop system

Plots of the rundown responses at the two hub sensors of the antenna for both open
and closed loop.

Iscl3mS.dat ... e
SANDY input file that eventually produced final controller. Contains weights, distur-
bance profile, and starting condition details.
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Appendix I

JPL Large Space Structure Model
(Chapter 4)

IS W . IO ..o

MATLAB binary data file for linearized and reduced antenna model
System matrices a, b, c, d

20th order model; all modes stable, most modes lightly damped (damping 0.007 to
0.01)

6 inputs: HAl and H A10 for hub actuators; RAl, RA4, RA7 and RA10 for rib root
actuators

6 outputs: HS1 and HS10 for hub sensors; RS1, RS4, RS7 and RS10 for rib root
SEnsors

All sensors collocated with corresponding actuators
All actuator inputs in Newton-meters

All sensor outputs in radians

PRECEDING PAGE BLANK NOT FH.MED
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Appendix J

One-Dimensional Rotocraft
Design Files (Chapter 2.7.1)

helicmO.dat, helicmil.dat, helicm2.dat, helicm3.dat ...........................
SANDY input files to run the 4 cases of initial condition versus gust response weighting.
Weights of 0, 0.1, 1.0 and 10. on the initial conditions are used.

helilr0.dat, helilrl.dat, helilr2.dat, helilr3.dat ......................ooot

SANDY input files to run the 4 cases of loop recovery where the actuator reliance is
lessened by injecting fictitious noise there. Weights of 0, 0.1, 1.0, and 10. are used for
this actuator noise. Files are input files for both regular (H?) and worst—case versions of
SANDY.

5 T=) T3 5 s W5 ¢ o WS

e MATLAB script file for analyzing H? versus worst—case algorithm performance for
a series of designs involving increasing degrees of stability augmentation over distur-
bance rejection.

e INPUTS:
helild.mat is the MATLAB-compatible data file for the basic open-loop one-dimensional

helicopter model.

helicmOh.m, helicmlh.m, helicm2h.m, helicm3h.m are the H? design output
files from their respective SANDY runs.

helicmOw.m, helicmlw.m, helicm2w.m, helicm3w.m are the worst—case design
output files from their respective WCSANDY runs.

¢ OUTPUTS:

RMS values of disturbance responses for displacement and pitch
Gain margins of the closed loop system for the 8 cases.
Phase margins of the closed loop system for the 8 cases.

Plots of the command responses to a position (X) change.
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e MATLAB script file for analyzing H? versus worst-case algorithm performance for a
series of designs involving increasing degrees of actuator—oriented loop recovery over
disturbance rejection.

s INPUTS:
helild.mat is the MATLAB-compatible data file for the basic open-loop one-dimensional

helicopter model.

helilrOh.m, helilr1h.m, helilr2h.m, helilr3h.m are the H? design output files
from their respective SANDY runs.

helilrOw.m, helilrlw.m, helilr2w.m, helilr8w.m are the worst-case design out-
put files from their respective WCSANDY runs.

e OUTPUTS:

RMS values of disturbance responses for displacement and pitch
Gain margins of the closed loop system for the 8 cases.

Phase margins of the closed loop system for the 8 cases.

Plots of the command responses to a position (X) change.
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